PuSH - Publikationsserver des Helmholtz Zentrums München

Rosenberger, A.* ; Friedrichs, S.* ; Amos, C.I.* ; Brennan, P.* ; Fehringer, G.* ; Heinrich, J. ; Hung, R.J.* ; Muley, T.R.* ; Müller-Nurasyid, M. ; Risch, A.* ; Bickeböller, H.*

META-GSA: Combining findings from gene-set analyses across several genome-wide association studies.

PLoS ONE 10:e0140179 (2015)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
INTRODUCTION: Gene-set analysis (GSA) methods are used as complementary approaches to genome-wide association studies (GWASs). The single marker association estimates of a predefined set of genes are either contrasted with those of all remaining genes or with a null non-associated background. To pool the p-values from several GSAs, it is important to take into account the concordance of the observed patterns resulting from single marker association point estimates across any given gene set. Here we propose an enhanced version of Fisher's inverse χ2-method META-GSA, however weighting each study to account for imperfect correlation between association patterns. SIMULATION AND POWER: We investigated the performance of META-GSA by simulating GWASs with 500 cases and 500 controls at 100 diallelic markers in 20 different scenarios, simulating different relative risks between 1 and 1.5 in gene sets of 10 genes. Wilcoxon's rank sum test was applied as GSA for each study. We found that META-GSA has greater power to discover truly associated gene sets than simple pooling of the p-values, by e.g. 59% versus 37%, when the true relative risk for 5 of 10 genes was assume to be 1.5. Under the null hypothesis of no difference in the true association pattern between the gene set of interest and the set of remaining genes, the results of both approaches are almost uncorrelated. We recommend not relying on p-values alone when combining the results of independent GSAs. APPLICATION: We applied META-GSA to pool the results of four case-control GWASs of lung cancer risk (Central European Study and Toronto/Lunenfeld-Tanenbaum Research Institute Study; German Lung Cancer Study and MD Anderson Cancer Center Study), which had already been analyzed separately with four different GSA methods (EASE; SLAT, mSUMSTAT and GenGen). This application revealed the pathway GO0015291 "transmembrane transporter activity" as significantly enriched with associated genes (GSA-method: EASE, p = 0.0315 corrected for multiple testing). Similar results were found for GO0015464 "acetylcholine receptor activity" but only when not corrected for multiple testing (all GSA-methods applied; p≈0.02).
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.234
1.034
3
2
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2015
HGF-Berichtsjahr 2015
ISSN (print) / ISBN 1932-6203
Zeitschrift PLoS ONE
Quellenangaben Band: 10, Heft: 10, Seiten: , Artikelnummer: e0140179 Supplement: ,
Verlag Public Library of Science (PLoS)
Verlagsort Lawrence, Kan.
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
Institute of Genetic Epidemiology (IGE)
POF Topic(s) 30503 - Chronic Diseases of the Lung and Allergies
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-503900-001
G-504100-001
PubMed ID 26501144
Scopus ID 84949496666
Erfassungsdatum 2015-11-06