PuSH - Publikationsserver des Helmholtz Zentrums München

Honigschmid, P.* ; Frishman, D.

Accurate prediction of helix interactions and residue contacts in membrane proteins.

J. Struct. Biol. 194, 112-123 (2016)
Postprint DOI PMC
Open Access Green
Accurate prediction of intra-molecular interactions from amino acid sequence is an important pre-requisite for obtaining high-quality protein models. Over the recent years, remarkable progress in this area has been achieved through the application of novel co-variation algorithms, which eliminate transitive evolutionary connections between residues. In this work we present a new contact prediction method for α-helical transmembrane proteins, MemConP, in which evolutionary couplings are combined with a machine learning approach. MemConP achieves a substantially improved accuracy (precision: 56.0%, recall: 17.5%, MCC: 0.288) compared to the use of either machine learning or co-evolution methods alone. The method also achieves 91.4% precision, 42.1% recall and a MCC of 0.490 in predicting helix-helix interactions based on predicted contacts. The approach was trained and rigorously benchmarked by cross-validation and independent testing on up-to-date non-redundant datasets of 90 and 30 experimental three dimensional structures, respectively. MemConP is a standalone tool that can be downloaded together with the associated training data from http://webclu.bio.wzw.tum.de/MemConP.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.570
1.069
15
18
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Machine Learning ; Molecular Interactions ; Protein Structure Prediction ; Sequence Analysis; Transmembrane Proteins; Data-bank; Database; Coevolution; Tm
Sprache
Veröffentlichungsjahr 2016
HGF-Berichtsjahr 2016
ISSN (print) / ISBN 1047-8477
e-ISSN 1047-8477
Quellenangaben Band: 194, Heft: 1, Seiten: 112-123 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort San Diego
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503700-001
Scopus ID 84958140857
PubMed ID 26851352
Erfassungsdatum 2016-02-08