PuSH - Publikationsserver des Helmholtz Zentrums München

Unbiased prediction and feature selection in high-dimensional survival regression.

J. Comput. Biol. 23, 279-290 (2016)
Postprint DOI PMC
Open Access Green
With widespread availability of omics profiling techniques, the analysis and interpretation of high-dimensional omics data, for example, for biomarkers, is becoming an increasingly important part of clinical medicine because such datasets constitute a promising resource for predicting survival outcomes. However, early experience has shown that biomarkers often generalize poorly. Thus, it is crucial that models are not overfitted and give accurate results with new data. In addition, reliable detection of multivariate biomarkers with high predictive power (feature selection) is of particular interest in clinical settings. We present an approach that addresses both aspects in high-dimensional survival models. Within a nested cross-validation (CV), we fit a survival model, evaluate a dataset in an unbiased fashion, and select features with the best predictive power by applying a weighted combination of CV runs. We evaluate our approach using simulated toy data, as well as three breast cancer datasets, to predict the survival of breast cancer patients after treatment. In all datasets, we achieve more reliable estimation of predictive power for unseen cases and better predictive performance compared to the standard CoxLasso model. Taken together, we present a comprehensive and flexible framework for survival models, including performance estimation, final feature selection, and final model construction. The proposed algorithm is implemented in an open source R package (SurvRank) available on CRAN.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
1.537
1.055
15
16
Tags
Icb_AtheroMed Icb_Integrament Icb_metabo Icb_MIMOmics
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Feature Selection ; High-dimensional Survival Regression ; Repeated Nested Cross Validation; Penalized Cox Regression; Breast-cancer Patients; Expression; Model; Lasso; Population; Signature; Risk
Sprache
Veröffentlichungsjahr 2016
HGF-Berichtsjahr 2016
ISSN (print) / ISBN 1066-5277
e-ISSN 1557-8666
Quellenangaben Band: 23, Heft: 4, Seiten: 279-290 Artikelnummer: , Supplement: ,
Verlag Mary Ann Liebert
Verlagsort New Rochelle
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
G-554100-001
Scopus ID 84964252998
PubMed ID 26894327
Erfassungsdatum 2016-03-03