PuSH - Publikationsserver des Helmholtz Zentrums München

Novotarskyi, S.* ; Abdelaziz, A.* ; Sushko, Y.* ; Körner, R.* ; Vogt, J.* ; Tetko, I.V.

ToxCast EPA in vitro to in vivo challenge: Insight into the rank-I model.

Chem. Res. Toxicol. 29, 768-775 (2016)
Anhang DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The ToxCast EPA challenge was managed by TopCoder in Spring 2014. The goal of the challenge was to develop a model to predict the lowest effect level (LEL) concentration based on in vitro measurements and calculated in silico descriptors. This article summarizes the computational steps used to develop the Rank-I model, which calculated the lowest prediction error for the secret test data set of the challenge. The model was developed using the publicly available Online CHEmical database and Modeling environment (OCHEM), and it is freely available at http://ochem.eu/article/68104 . Surprisingly, this model does not use any in vitro measurements. The logic of the decision steps used to develop the model and the reason to skip inclusion of in vitro measurements is described. We also show that inclusion of in vitro assays would not improve the accuracy of the model.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.025
1.137
15
19
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Artificial Neural-networks; Variable Selection; Applicability Domain; Qsar Models; Descriptors; Complexes; Molecules; Toxicity; Pt(ii); Tools
Sprache
Veröffentlichungsjahr 2016
HGF-Berichtsjahr 2016
ISSN (print) / ISBN 0893-228X
e-ISSN 1520-5010
Quellenangaben Band: 29, Heft: 5, Seiten: 768-775 Artikelnummer: , Supplement: ,
Verlag American Chemical Society (ACS)
Verlagsort Washington
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503000-003
Scopus ID 84969816544
PubMed ID 27120770
Erfassungsdatum 2016-05-25