PuSH - Publikationsserver des Helmholtz Zentrums München

Abdelmoula, W.M.* ; Balluff, B.* ; Englert, S. ; Dijkstra, J.* ; Reinders, M.J.T.* ; Walch, A.K. ; McDonnell, L.A.* ; Lelieveldt, B.P.F.*

Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data.

Proc. Natl. Acad. Sci. U.S.A. 113, 12244-12249 (2016)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
The identification of tumor subpopulations that adversely affect patient outcomes is essential for a more targeted investigation into how tumors develop detrimental phenotypes, as well as for personalized therapy. Mass spectrometry imaging has demonstrated the ability to uncover molecular intratumor heterogeneity. The challenge has been to conduct an objective analysis of the resulting data to identify those tumor subpopulations that affect patient outcome. Here we introduce spatially mapped t-distributed stochastic neighbor embedding (t-SNE), a nonlinear visualization of the data that is able to better resolve the biomolecular intratumor heterogeneity. In an unbiased manner, t-SNE can uncover tumor subpopulations that are statistically linked to patient survival in gastric cancer and metastasis status in primary tumors of breast cancer.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
9.423
2.565
63
100
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter intratumor heterogeneity; mass spectrometry imaging; t-SNE; biomarker; cancer; Intratumor Heterogeneity; Clonal Evolution; Cancer; Visualization; Challenges; Expression; Brain
Sprache
Veröffentlichungsjahr 2016
HGF-Berichtsjahr 2016
ISSN (print) / ISBN 0027-8424
e-ISSN 1091-6490
Quellenangaben Band: 113, Heft: 43, Seiten: 12244-12249 Artikelnummer: , Supplement: ,
Verlag National Academy of Sciences
Verlagsort Washington
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-500390-001
PubMed ID 27791011
Erfassungsdatum 2016-11-04