Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma.
Anal. Chem. 89, 656-665 (2017)
A critical question facing the field of metabolomics is whether data obtained from different centers can be effectively compared and combined. An important aspect of this is the interlaboratory precision (reproducibility) of the analytical protocols used. We analyzed human samples in six laboratories using different instrumentation but a common protocol (the AbsoluteIDQ p180 kit) for the measurement of 189 metabolites via liquid chromatography (LC) or flow injection analysis (FIA) coupled to tandem mass spectrometry (MS/MS). In spiked quality control (QC) samples 82% of metabolite measurements had an interlaboratory precision of <20%, while 83% of averaged individual laboratory measurements were accurate to within 20%. For 20 typical biological samples (serum and plasma from healthy individuals) the median interlaboratory coefficient of variation (CV) was 7.6%, with 85% of metabolites exhibiting a median interlaboratory CV of <20%. Precision was largely independent of the type of sample (serum or plasma) or the anticoagulant used but was reduced in a sample from a patient with dyslipidaemia. The median interlaboratory accuracy and precision of the assay for standard reference plasma (NIST SRM 1950) were 107% and 6.7%, respectively. Likely sources of irreproducibility were the near limit of detection (LOD) typical abundance of some metabolites and the degree of manual review and optimization of peak integration in the LC–MS/MS data after acquisition. Normalization to a reference material was crucial for the semi-quantitative FIA measurements. This is the first interlaboratory assessment of a widely used, targeted metabolomics assay illustrating the reproducibility of the protocol and how data generated on different instruments could be directly integrated in large-scale epidemiological studies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
6.320
1.491
129
155
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Standard Reference Material; Nmr; Cohort; Metabolism; Biomarkers; Cancers
Sprache
englisch
Veröffentlichungsjahr
2017
Prepublished im Jahr
2016
HGF-Berichtsjahr
2016
ISSN (print) / ISBN
0003-2700
e-ISSN
1520-6882
Zeitschrift
Analytical Chemistry
Quellenangaben
Band: 89,
Heft: 1,
Seiten: 656-665
Verlag
American Chemical Society (ACS)
Verlagsort
Washington
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Bioinformatics and Systems Biology (IBIS)
Molekulare Endokrinologie und Metabolismus (MEM)
Molekulare Endokrinologie und Metabolismus (MEM)
POF Topic(s)
30505 - New Technologies for Biomedical Discoveries
30201 - Metabolic Health
30201 - Metabolic Health
Forschungsfeld(er)
Enabling and Novel Technologies
Genetics and Epidemiology
Genetics and Epidemiology
PSP-Element(e)
G-503700-001
G-505600-003
G-505600-003
WOS ID
WOS:000391346600050
Erfassungsdatum
2016-12-23