PuSH - Publikationsserver des Helmholtz Zentrums München

Zheng, J.* ; Erzurumluoglu, A.M.* ; Elsworth, B.L.* ; Kemp, J.P.* ; Howe, L.* ; Haycock, P.C.* ; Hemani, G.* ; Tansey, K.* ; Laurin, C.* ; St. Pourcain, B.* ; Warrington, N.M.* ; Finucane, H.K.* ; Price, A.L.* ; Bulik-Sullivan, B.* ; Anttila, V.* ; Paternoster, L.* ; Gaunt, T.R.* ; Evans, D.M* ; Neale, B.M.* ; EUMODIC Consortium (Heinrich, J.)

LD Hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis.

Bioinformatics 33, 272-279 (2017)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
MOTIVATION: LD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously. RESULTS: In this manuscript, we describe LD Hub - a centralized database of summary-level GWAS results for 173 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies. AVAILABILITY AND IMPLEMENTATION: The web interface and instructions for using LD Hub are available at http://ldsc.broadinstitute.org/ CONTACT: jie.zheng@bristol.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
7.307
2.099
25
488
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache
Veröffentlichungsjahr 2017
Prepublished im Jahr 2016
HGF-Berichtsjahr 2016
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 33, Heft: 2, Seiten: 272-279 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30503 - Chronic Diseases of the Lung and Allergies
80000 - German Center for Lung Research
Forschungsfeld(er) Genetics and Epidemiology
Lung Research
PSP-Element(e) G-503900-001
G-501800-392
PubMed ID 27663502
Erfassungsdatum 2016-12-31