PuSH - Publikationsserver des Helmholtz Zentrums München

Abadi, E.* ; Sturgeon, G.M.* ; Agasthya, G.* ; Harrawood, B.* ; Hoeschen, C. ; Kapadia, A.* ; Segars, W.P.* ; Samei, E.*

Airways, vasculature, and interstitial tissue: Anatomically informed computational modeling of human lungs for virtual clinical trials.

Proc. SPIE 10132:101321Q (2017)
Verlagsversion Postprint DOI
Open Access Green
his study aimed to model virtual human lung phantoms including both non-parenchymal and parenchymal structures. Initial branches of the non-parenchymal structures (airways, arteries, and veins) were segmented from anatomical data in each lobe separately. A volume-filling branching algorithm was utilized to grow the higher generations of the airways and vessels to the level of terminal branches. The diameters of the airways and vessels were estimated using established relationships between flow rates and diameters. The parenchyma was modeled based on secondary pulmonary lobule units. Polyhedral shapes with variable sizes were modeled, and the borders were assigned to interlobular septa. A heterogeneous background was added inside these units using a non-parametric texture synthesis algorithm which was informed by a high-resolution CT lung specimen dataset. A voxelized based CT simulator was developed to create synthetic helical CT images of the phantom with different pitch values. Results showed the progressive degradation in depiction of lung details with increased pitch. Overall, the enhanced lung models combined with the XCAT phantoms prove to provide a powerful toolset to perform virtual clinical trials in the context of thoracic imaging. Such trials, not practical using clinical datasets or simplistic phantoms, can quantitatively evaluate and optimize advanced imaging techniques towards patient-based care.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
0.000
0.384
17
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Computational phantom, CT simulator, Lung modeling, XCAT phantoms
Sprache englisch
Veröffentlichungsjahr 2017
HGF-Berichtsjahr 2017
ISSN (print) / ISBN 0277-786X
e-ISSN 1996-756X
Konferenztitel Medical Imaging 2017: Physics of Medical Imaging
Konferzenzdatum 11 February 2017
Konferenzort Orlando, Florida, United States
Zeitschrift Proceedings of SPIE
Quellenangaben Band: 10132, Heft: , Seiten: , Artikelnummer: 101321Q Supplement: ,
Verlag SPIE
Begutachtungsstatus Peer reviewed
POF Topic(s) 30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501100-008
Scopus ID 85020479349
Erfassungsdatum 2017-03-20