PuSH - Publikationsserver des Helmholtz Zentrums München

Model-based branching point detection in single-cell data by K-Branches clustering.

Bioinformatics 33, 3211-3219 (2017)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Motivation: The identification of heterogeneities in cell populations by utilizing single-cell technologies such as single-cell RNA-Seq, enables inference of cellular development and lineage trees. Several methods have been proposed for such inference from high-dimensional single-cell data. They typically assign each cell to a branch in a differentiation trajectory. However, they commonly assume specific geometries such as tree-like developmental hierarchies and lack statistically sound methods to decide on the number of branching events. Results: We present K-Branches, a solution to the above problem by locally fitting half-lines to single-cell data, introducing a clustering algorithm similar to K-Means. These halflines are proxies for branches in the differentiation trajectory of cells. We propose a modified version of the GAP statistic for model selection, in order to decide on the number of lines that best describe the data locally. In this manner, we identify the location and number of subgroups of cells that are associated with branching events and full differentiation, respectively. We evaluate the performance of our method on single-cell RNA-Seq data describing the differentiation of myeloid progenitors during hematopoiesis, single-cell qPCR data of mouse blastocyst development, single-cell qPCR data of human myeloid monocytic leukemia and artificial data. Availability: An R implementation of K-Branches is freely available at https://github.com/theislab/kbranches.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
7.307
2.099
4
6
Tags
Icb_ML
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Rna-seq Data; Fate Decisions; Diffusion Maps; Heterogeneity; Trajectories; Definition; Dynamics
Sprache englisch
Veröffentlichungsjahr 2017
HGF-Berichtsjahr 2017
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 33, Heft: 20, Seiten: 3211-3219 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
PubMed ID 28582478
Scopus ID 85031825743
Erfassungsdatum 2017-06-26