möglich sobald  bei der ZB eingereicht worden ist.
		
    
        
        FASEB J. 32, 703-716 (2017)
    
    
    
				Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with limited therapeutic options and unknown etiology. IPF is characterized by epithelial cell injury, impaired cellular crosstalk between epithelial cells and fibroblasts, and the formation of fibroblast foci with increased extracellular matrix deposition (ECM). We investigated the role of runt-related transcription factor 2 (RUNX2), a master regulator of bone development that has been linked to profibrotic signaling. RUNX2 expression was up-regulated in lung homogenates from patients with IPF and in experimental bleomycin-induced lung fibrosis. The RUNX2 level correlated with disease severity as measured by decreased diffusing capacity and increased levels of the IPF biomarker, matrix metalloproteinase 7. Nuclear RUNX2 was observed in prosurfactant protein C-positive hyperplastic epithelial cells and was rarely found in myofibroblasts. We discovered an up-regulation of RUNX2 in fibrotic alveolar epithelial type II (ATII) cells as well as an increase of RUNX2-negative fibroblasts in experimental and human pulmonary fibrosis. Functionally, small interfering RNA-mediated RUNX2 knockdown decreased profibrotic ATII cell function, such as proliferation and migration, whereas fibroblasts displayed activation markers and increased ECM expression after RUNX2 knockdown. This study reveals that RUNX2 is differentially expressed in ATII cells vs. fibroblasts in lung fibrosis, which contributes to profibrotic cell function. Cell-specific targeting of RUNX2 pathways may represent a therapeutic approach for IPF.
			
			
		Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Times Cited
Scopus
Cited By
					
					Cited By
Altmetric
					
				5.498
					1.220
					9
					8
					
					
				Anmerkungen
				
					
						 
						
					
				
			
				
			
				Besondere Publikation
				
					
						 
					
				
			
			
			
				Auf Hompepage verbergern
				
					
						 
					
				
			
			
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
     
    
    
        Schlagwörter
        Runx2 ; Ipf ; Alveolar Epithelial Cells ; Fibroblast; Alveolar Epithelial-cells; Human Lung Fibroblasts; Mesenchymal Transition; Signaling Pathway; Osteoblast Differentiation; Molecular-mechanisms; Gene-expression; Breast-cancer; Beta; Proliferation
    
 
     
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2017
    
 
     
    
        HGF-Berichtsjahr
        2017
    
 
    
    
        ISSN (print) / ISBN
        0892-6638
    
 
    
        e-ISSN
        1530-6860
    
 
     
     
     
	     
	 
	 
    
        Zeitschrift
        FASEB Journal
    
 
		
    
        Quellenangaben
        
	    Band: 32,  
	    Heft: 2,  
	    Seiten: 703-716 
	    
	    
	
    
 
  
         
        
            Verlag
            Wiley
        
 
        
            Verlagsort
            Bethesda, Md.
        
 
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30202 - Environmental Health
30203 - Molecular Targets and Therapies
 
    30203 - Molecular Targets and Therapies
        Forschungsfeld(er)
        Lung Research
Immune Response and Infection
 
    Immune Response and Infection
        PSP-Element(e)
        G-501600-001
G-501500-004
G-503100-001
 
     
     	
    
    G-501500-004
G-503100-001
        WOS ID
        WOS:000425146900015
    
    
        Scopus ID
        85041668657
    
    
        PubMed ID
        28986417
    
    
        Erfassungsdatum
        2017-10-12