PuSH - Publikationsserver des Helmholtz Zentrums München

Paige, E.* ; Barrett, J.* ; Pennells, L.* ; Sweeting, M.* ; Willeit, P.* ; di Angelantonio, E.* ; Gudnason, V.* ; Nørdestgaard, B.G.* ; Psaty, B.M.* ; Goldbourt, U.* ; Best, L.G.* ; Assmann, G.* ; Salonen, J.T.* ; Nietert, P.J.* ; Verschuren, W.M.M.* ; Brunner, E.J.* ; Kronmal, R.A.* ; Salomaa, V.* ; Bakker, S.J.L.* ; Dagenais, G.R.* ; Sato, S.* ; Jansson, J.* ; Willeit, J.* ; Onat, A.* ; de la Camara, A.G.* ; Roussel, R.* ; Völzke, H.* ; Dankner, R.* ; Tipping, R.W.* ; Meade, T.W.* ; Donfrancesco, C.* ; Kuller, L.H.* ; Peters, A. ; Gallacher, J.* ; Kromhout, D.* ; Iso, H.* ; Knuiman, M.* ; Casiglia, E.* ; Kavousi, M.* ; Palmieri, L.* ; Sundström, J.* ; Davis, B.R.* ; Njolstad, I.* ; Couper, D.* ; Danesh, J.* ; Thompson, S.G.* ; Wood, A.*

Use of repeated blood pressure and cholesterol measurements to improve cardiovascular disease risk prediction: An individual-participant-data meta-analysis.

Am. J. Epidemiol. 186, 899-907 (2017)
Verlagsversion Forschungsdaten DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (C-index) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.825
1.805
19
24
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Cardiovascular Disease ; Longitudinal Measurements ; Repeated Measurements ; Risk Factors ; Risk Prediction; Coronary-heart-disease; Multiple; Variability; Models
Sprache englisch
Veröffentlichungsjahr 2017
HGF-Berichtsjahr 2017
ISSN (print) / ISBN 0002-9262
e-ISSN 1476-6256
Quellenangaben Band: 186, Heft: 8, Seiten: 899-907 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Cary
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504000-005
Scopus ID 85031923939
Erfassungsdatum 2017-11-08