PuSH - Publikationsserver des Helmholtz Zentrums München

Veerman, F.* ; Marr, C. ; Popović, N.*

Time-dependent propagators for stochastic models of gene expression: An analytical method.

J. Math. Biol., 1-52 (2017)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The inherent stochasticity of gene expression in the context of regulatory networks profoundly influences the dynamics of the involved species. Mathematically speaking, the propagators which describe the evolution of such networks in time are typically defined as solutions of the corresponding chemical master equation (CME). However, it is not possible in general to obtain exact solutions to the CME in closed form, which is due largely to its high dimensionality. In the present article, we propose an analytical method for the efficient approximation of these propagators. We illustrate our method on the basis of two categories of stochastic models for gene expression that have been discussed in the literature. The requisite procedure consists of three steps: a probability-generating function is introduced which transforms the CME into (a system of) partial differential equations (PDEs); application of the method of characteristics then yields (a system of) ordinary differential equations (ODEs) which can be solved using dynamical systems techniques, giving closed-form expressions for the generating function; finally, propagator probabilities can be reconstructed numerically from these expressions via the Cauchy integral formula. The resulting ‘library’ of propagators lends itself naturally to implementation in a Bayesian parameter inference scheme, and can be generalised systematically to related categories of stochastic models beyond the ones considered here.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
1.566
1.171
14
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Asymptotic Analysis ; Dynamical Systems ; Perturbation Techniques ; Probability Generating Function ; Propagator ; Stochastic Gene Expression
Sprache englisch
Veröffentlichungsjahr 2017
HGF-Berichtsjahr 2017
ISSN (print) / ISBN 0303-6812
e-ISSN 1432-1416
Quellenangaben Band: , Heft: , Seiten: 1-52 Artikelnummer: , Supplement: ,
Verlag Springer
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
PubMed ID 29247320
Scopus ID 85038094278
Erfassungsdatum 2017-12-23