PuSH - Publikationsserver des Helmholtz Zentrums München

Hellbach, K.* ; Yaroshenko, A.* ; Willer, K.* ; Conlon, T.M. ; Braunagel, M.B.* ; Auweter, S.* ; Yildirim, A.Ö. ; Eickelberg, O. ; Pfeiffer, F.* ; Reiser, M.F.* ; Meinel, F.G.*

X-ray dark-field radiography facilitates the diagnosis of pulmonary fibrosis in a mouse model.

Sci. Rep. 7:340 (2017)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The aim of this study was to evaluate whether diagnosing pulmonary fibrosis with projection radiography can be improved by using X-ray dark-field radiograms. Pulmonary X-ray transmission and dark-field images of C57Bl/6N mice, either treated with bleomycin to induce pulmonary fibrosis or PBS to serve as controls, were acquired with a prototype grating-based small-animal scanner. Two blinded readers, both experienced radiologists and familiar with dark-field imaging, had to assess dark-field and transmission images for the absence or presence of fibrosis. Furthermore readers were asked to grade their stage of diagnostic confidence. Histological evaluation of the lungs served as the standard of reference in this study. Both readers showed a notably higher diagnostic confidence when analyzing the dark-field radiographs (p< 0.001). Diagnostic accuracy improved significantly when evaluating the lungs in dark-field images alone (p = 0.02) or in combination with transmission images (p = 0.01) compared to sole analysis of absorption images. Interreader agreement improved from good when assessing only transmission images to excellent when analyzing dark-field images alone or in combination with transmission images. Adding dark-field images to conventional transmission images in a murine model of pulmonary fibrosis leads to an improved diagnosis of this disease on chest radiographs.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.259
1.401
21
20
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Computed-tomography; Image Quality; Lung-disease; Ct; Interferometer; Statement
Sprache englisch
Veröffentlichungsjahr 2017
HGF-Berichtsjahr 2017
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Zeitschrift Scientific Reports
Quellenangaben Band: 7, Heft: , Seiten: , Artikelnummer: 340 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Lung Research
PSP-Element(e) G-505000-007
G-501600-001
Scopus ID 85016801769
PubMed ID 28336945
Erfassungsdatum 2018-02-12