PuSH - Publikationsserver des Helmholtz Zentrums München

Massner, C. ; Sigmund, F. ; Pettinger, S. ; Seeger, M. ; Hartmann, C.* ; Ivleva, N.P.* ; Niessner, R.* ; Fuchs, H. ; Hrabě de Angelis, M. ; Stelzl, A. ; Koonakampully, N.L. ; Rolbieski, H. ; Wiedwald, U.* ; Spasova, M. ; Wurst, W. ; Ntziachristos, V. ; Winklhofer, M.* ; Westmeyer, G.G.

Genetically controlled lysosomal entrapment of superparamagnetic ferritin for multimodal and multiscale imaging and actuation with low tissue attenuation.

Adv. Func. Mat. 28:1706793 (2018)
Postprint DOI
Open Access Green
Nanomaterials are of enormous value for biomedical applications because of their customizable features. However, the material properties of nanomaterials can be altered substantially by interactions with tissue thus making it important to assess them in the specific biological context to understand and tailor their effects. Here, a genetically controlled system is optimized for cellular uptake of superparamagnetic ferritin and subsequent trafficking to lysosomes. High local concentrations of photoabsorbing magnetoferritin give robust contrast in optoacoustic imaging and allow for selective photoablation of cells overexpressing ferritin receptors. Genetically controlled uptake of the biomagnetic nanoparticles also strongly enhances third-harmonic generation due to the change of refractive index caused by the magnetite-protein interface of ferritins entrapped in lysosomes. Selective uptake of magnetoferritin furthermore enables sensitive detection of receptor-expressing cells by magnetic resonance imaging, as well as efficient magnetic cell sorting and manipulation. Surprisingly, a substantial increase in the blocking temperature of lysosomally entrapped magnetoferritin is observed, which allows for specific ablation of genetically defined cell populations by local magnetic hyperthermia. The subcellular confinement of superparamagnetic ferritins thus enhances their physical properties to empower genetically controlled interrogation of cellular processes with deep tissue penetration.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
13.325
2.231
12
13
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Magnetic Hyperthermia ; Magnetic Resonance Imaging (mri) ; Magnetoferritin ; Optoacoustic Imaging ; Third-harmonic Generation (thg)
Sprache englisch
Veröffentlichungsjahr 2018
HGF-Berichtsjahr 2018
ISSN (print) / ISBN 1616-301X
e-ISSN 1616-3028
Quellenangaben Band: 28, Heft: 19, Seiten: , Artikelnummer: 1706793 Supplement: ,
Verlag Wiley
Verlagsort Weinheim
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
30205 - Bioengineering and Digital Health
30201 - Metabolic Health
30204 - Cell Programming and Repair
Forschungsfeld(er) Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e) G-552000-001
G-505592-001
G-505500-001
G-500600-001
G-500500-001
Scopus ID 85043577041
Erfassungsdatum 2018-03-16