PuSH - Publikationsserver des Helmholtz Zentrums München

MoDentify: Phenotype-driven module identification in metabolomics networks at different resolutions.

Bioinformatics 35, 532-534 (2019)
Verlagsversion Postprint Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Associations of metabolomics data with phenotypic outcomes are expected to span functional modules, which are defined as sets of correlating metabolites that are coordinately regulated. Moreover, these associations occur at different scales, from entire pathways to only a few metabolites; an aspect that has not been addressed by previous methods. Here, we present MoDentify, a free R package to identify regulated modules in metabolomics networks at different layers of resolution. Importantly, MoDentify shows higher statistical power than classical association analysis. Moreover, the package offers direct interactive visualization of the results in Cytoscape. We present an application example using complex, multifluid metabolomics data. Due to its generic character, the method is widely applicable to other types of data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.531
1.869
8
9
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache
Veröffentlichungsjahr 2019
Prepublished im Jahr 2018
HGF-Berichtsjahr 2018
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 35, Heft: 3, Seiten: 532-534 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
G-503700-001
G-554100-001
Scopus ID 85061162778
PubMed ID 30032270
Erfassungsdatum 2018-07-24