Endesfelder, D. ; zu Castell-Rüdenhausen, W. ; Bonifacio, E.* ; Rewers, M.* ; Hagopian, W.A.* ; She, J.X.* ; Lernmark, A.* ; Toppari, J.* ; Vehik, K.* ; Williams, A.J.K.* ; Yu, L.* ; Akolkar, B.* ; Krischer, J.P.* ; Ziegler, A.-G. ; Achenbach, P.
Time-resolved autoantibody profiling facilitates stratification of preclinical type 1 diabetes in children.
Diabetes 68, 119-130 (2018)
Progression to clinical type 1 diabetes varies among children who develop beta-cell autoantibodies. Differences in autoantibody patterns could relate to disease progression and etiology. Here we modeled complex longitudinal auto-antibody profiles by using a novel wavelet-based algorithm. We identified clusters of similar profiles associated with various types of progression among 600 children from The Environmental Determinants of Diabetes in the Young (TEDDY) birth cohort study; these children developed persistent insulin autoantibodies (IAA), GAD autoantibodies (GADA), insulinoma-associated antigen 2 autoantibodies (IA-2A), or a combination of these, and they were followed up prospectively at 3- to 6-month intervals (median follow-up 6.5 years). Children who developed multiple autoantibody types (n = 370) were clustered, and progression from seroconversion to clinical diabetes within 5 years ranged between clusters from6%(95% CI 0, 17.4) to 84% (59.2, 93.6). Children who seroconverted early in life (median age <2 years) and developed IAA and IA-2A that were stable-positive on follow-up had the highest risk of diabetes, and this risk was unaffected by GADA status. Clusters of children who lacked stable-positive GADA responses contained more boys and lower frequencies of the HLA-DR3 allele. Our novel algorithm allows refined grouping of beta-cell autoantibody-positive children who distinctly progressed to clinical type 1 diabetes, and it provides new opportunities in searching for etiological factors and elucidating complex disease mechanisms.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Islet Autoantibodies; Environmental Determinants; Respiratory-infections; Risk; Progression; Autoimmunity; Prediction; Antibodies; Appearance; Relatives
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2018
Prepublished im Jahr
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
0012-1797
e-ISSN
1939-327X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 68,
Heft: 1,
Seiten: 119-130
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
American Diabetes Association
Verlagsort
Alexandria, VA.
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30201 - Metabolic Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er)
Helmholtz Diabetes Center
Enabling and Novel Technologies
PSP-Element(e)
G-502100-001
G-503890-001
Förderungen
Copyright
Erfassungsdatum
2018-10-23