PuSH - Publikationsserver des Helmholtz Zentrums München

Endesfelder, D. ; zu Castell-Rüdenhausen, W. ; Bonifacio, E.* ; Rewers, M.* ; Hagopian, W.A.* ; She, J.X.* ; Lernmark, A.* ; Toppari, J.* ; Vehik, K.* ; Williams, A.J.K.* ; Yu, L.* ; Akolkar, B.* ; Krischer, J.P.* ; Ziegler, A.-G. ; Achenbach, P.

Time-resolved autoantibody profiling facilitates stratification of preclinical type 1 diabetes in children.

Diabetes 68, 119-130 (2018)
Verlagsversion Postprint DOI PMC
Open Access Green
Progression to clinical type 1 diabetes varies among children who develop beta-cell autoantibodies. Differences in autoantibody patterns could relate to disease progression and etiology. Here we modeled complex longitudinal auto-antibody profiles by using a novel wavelet-based algorithm. We identified clusters of similar profiles associated with various types of progression among 600 children from The Environmental Determinants of Diabetes in the Young (TEDDY) birth cohort study; these children developed persistent insulin autoantibodies (IAA), GAD autoantibodies (GADA), insulinoma-associated antigen 2 autoantibodies (IA-2A), or a combination of these, and they were followed up prospectively at 3- to 6-month intervals (median follow-up 6.5 years). Children who developed multiple autoantibody types (n = 370) were clustered, and progression from seroconversion to clinical diabetes within 5 years ranged between clusters from6%(95% CI 0, 17.4) to 84% (59.2, 93.6). Children who seroconverted early in life (median age <2 years) and developed IAA and IA-2A that were stable-positive on follow-up had the highest risk of diabetes, and this risk was unaffected by GADA status. Clusters of children who lacked stable-positive GADA responses contained more boys and lower frequencies of the HLA-DR3 allele. Our novel algorithm allows refined grouping of beta-cell autoantibody-positive children who distinctly progressed to clinical type 1 diabetes, and it provides new opportunities in searching for etiological factors and elucidating complex disease mechanisms.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
7.273
1.868
16
24
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Islet Autoantibodies; Environmental Determinants; Respiratory-infections; Risk; Progression; Autoimmunity; Prediction; Antibodies; Appearance; Relatives
Sprache englisch
Veröffentlichungsjahr 2018
HGF-Berichtsjahr 2018
ISSN (print) / ISBN 0012-1797
e-ISSN 1939-327X
Zeitschrift Diabetes
Quellenangaben Band: 68, Heft: 1, Seiten: 119-130 Artikelnummer: , Supplement: ,
Verlag American Diabetes Association
Verlagsort Alexandria, VA.
Begutachtungsstatus Peer reviewed
POF Topic(s) 30201 - Metabolic Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Helmholtz Diabetes Center
Enabling and Novel Technologies
PSP-Element(e) G-502100-001
G-503890-001
Scopus ID 85058886151
PubMed ID 30305370
Erfassungsdatum 2018-10-23