PuSH - Publikationsserver des Helmholtz Zentrums München

Efendiyev, M.A. ; van Brunt, B.* ; Zaidi, A.A.* ; Shah, T.H.*

Asymmetric cell division with stochastic growth rate. Dedicated to the memory of the late Spartak Agamirzayev.

Math. Meth. Appl. Sci. 41, 8059-8069 (2018)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
A cell growth model for a size-structured cell population with a stochastic growth rate for size and division into two daughter cells of unequal size is studied in this paper. The model entails an initial boundary value problem that involves a second-order parabolic partial differential equation with two nonlocal terms, the presence of which is a consequence of asymmetry in the cell division. The solution techniques for solving such problems are rare due to the nonlocal terms. In this paper, we solve the initial boundary value problem for arbitrary initial distributions. We obtain a separable solution, as well as the general solution to the partial differential equation, and show that the solutions converge to the separable solution for large time. As in the symmetric division case, the dispersion term does not affect the rate of convergence to the separable solution.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
1.180
0.778
3
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache
Veröffentlichungsjahr 2018
HGF-Berichtsjahr 2018
ISSN (print) / ISBN 0170-4214
e-ISSN 1099-1476
Quellenangaben Band: 41, Heft: 17, Seiten: 8059-8069 Artikelnummer: , Supplement: ,
Verlag Wiley
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 85062599368
Scopus ID 85053504379
Erfassungsdatum 2018-10-18