PuSH - Publikationsserver des Helmholtz Zentrums München

Pitea, A. ; Kondofersky, I.* ; Sass, S. ; Theis, F.J. ; Müller, N.S. ; Unger, K.

Copy number aberrations from Affymetrix SNP 6.0 genotyping data-how accurate are commonly used prediction approaches?

Brief. Bioinform. 21, 272-281 (2020)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Copy number aberrations (CNAs) are known to strongly affect oncogenes and tumour suppressor genes. Given the critical role CNAs play in cancer research, it is essential to accurately identify CNAs from tumour genomes. One particular challenge in finding CNAs is the effect of confounding variables. To address this issue, we assessed how commonly used CNA identification algorithms perform on SNP 6.0 genotyping data in the presence of confounding variables. We simulated realistic synthetic data with varying levels of three confounding variables-the tumour purity, the length of a copy number region and the CNA burden (the percentage of CNAs present in a profiled genome)-and evaluated the performance of OncoSNP, ASCAT, GenoCNA, GISTIC and CGHcall. Furthermore, we implemented and assessed CGHcall*, an adjusted version of CGHcall accounting for high CNA burden. Our analysis on synthetic data indicates that tumour purity and the CNA burden strongly influence the performance of all the algorithms. No algorithm can correctly find lost and gained genomic regions across all tumour purities. The length of CNA regions influenced the performance of ASCAT, CGHcall and GISTIC. OncoSNP, GenoCNA and CGHcall* showed little sensitivity. Overall, CGHcall* and OncoSNP showed reasonable performance, particularly in samples with high tumour purity. Our analysis on the HapMap data revealed a good overlap between CGHcall, CGHcall* and GenoCNA results and experimentally validated data. Our exploratory analysis on the TCGA HNSCC data revealed plausible results of CGHcall, CGHcall* and GISTIC in consensus HNSCC CNA regions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
8.990
2.126
2
3
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Copy Number Calling Algorithm ; Performance Assessment ; Cancer Genomics ; Copy Number Aberrations; Identification; Segmentation; Mutations; Biology; Head
Sprache englisch
Veröffentlichungsjahr 2020
Prepublished im Jahr 2018
HGF-Berichtsjahr 2018
ISSN (print) / ISBN 1467-5463
e-ISSN 1477-4054
Quellenangaben Band: 21, Heft: 1, Seiten: 272-281 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Great Clarendon St, Oxford Ox2 6dp, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Forschungsfeld(er) Radiation Sciences
Enabling and Novel Technologies
PSP-Element(e) G-501000-001
G-503800-001
G-521800-001
PubMed ID 30351397
Erfassungsdatum 2018-10-26