Copy number aberrations from Affymetrix SNP 6.0 genotyping data-how accurate are commonly used prediction approaches?
Brief. Bioinform. 21, 272-281 (2020)
Copy number aberrations (CNAs) are known to strongly affect oncogenes and tumour suppressor genes. Given the critical role CNAs play in cancer research, it is essential to accurately identify CNAs from tumour genomes. One particular challenge in finding CNAs is the effect of confounding variables. To address this issue, we assessed how commonly used CNA identification algorithms perform on SNP 6.0 genotyping data in the presence of confounding variables. We simulated realistic synthetic data with varying levels of three confounding variables-the tumour purity, the length of a copy number region and the CNA burden (the percentage of CNAs present in a profiled genome)-and evaluated the performance of OncoSNP, ASCAT, GenoCNA, GISTIC and CGHcall. Furthermore, we implemented and assessed CGHcall*, an adjusted version of CGHcall accounting for high CNA burden. Our analysis on synthetic data indicates that tumour purity and the CNA burden strongly influence the performance of all the algorithms. No algorithm can correctly find lost and gained genomic regions across all tumour purities. The length of CNA regions influenced the performance of ASCAT, CGHcall and GISTIC. OncoSNP, GenoCNA and CGHcall* showed little sensitivity. Overall, CGHcall* and OncoSNP showed reasonable performance, particularly in samples with high tumour purity. Our analysis on the HapMap data revealed a good overlap between CGHcall, CGHcall* and GenoCNA results and experimentally validated data. Our exploratory analysis on the TCGA HNSCC data revealed plausible results of CGHcall, CGHcall* and GISTIC in consensus HNSCC CNA regions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Copy Number Calling Algorithm ; Performance Assessment ; Cancer Genomics ; Copy Number Aberrations; Identification; Segmentation; Mutations; Biology; Head
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
2018
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
1467-5463
e-ISSN
1477-4054
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 21,
Heft: 1,
Seiten: 272-281
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Great Clarendon St, Oxford Ox2 6dp, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Forschungsfeld(er)
Radiation Sciences
Enabling and Novel Technologies
PSP-Element(e)
G-501000-001
G-503800-001
G-521800-001
Förderungen
Copyright
Erfassungsdatum
2018-10-26