PuSH - Publikationsserver des Helmholtz Zentrums München

Balluff, B.* ; Buck, A. ; Martin-Lorenzo, M.* ; Dewez, F.* ; Langer, R.* ; McDonnell, L.A.* ; Walch, A.K. ; Heeren, R.M.A.*

Integrative clustering in mass spectrometry imaging for enhanced patient stratification.

Proteomics Clin. Appl. 13:e1800137 (2019)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Scope In biomedical research, mass spectrometry imaging (MSI) can obtain spatially-resolved molecular information from tissue sections. Especially matrix-assisted laser desorption/ionization (MALDI) MSI offers, depending on the type of matrix, the detection of a broad variety of molecules ranging from metabolites to proteins, thereby facilitating the collection of multilevel molecular data. Lately, integrative clustering techniques have been developed that make use of the complementary information of multilevel molecular data in order to better stratify patient cohorts, but which have not yet been applied in the field of MSI. Materials and Methods In this study, the potential of integrative clustering is investigated for multilevel molecular MSI data to subdivide cancer patients into different prognostic groups. Metabolomic and peptidomic data are obtained by MALDI-MSI from a tissue microarray containing material of 46 esophageal cancer patients. The integrative clustering methods Similarity Network Fusion, iCluster, and moCluster are applied and compared to non-integrated clustering. Conclusion The results show that the combination of multilevel molecular data increases the capability of integrative algorithms to detect patient subgroups with different clinical outcome, compared to the single level or concatenated data. This underlines the potential of multilevel molecular data from the same subject using MSI for subsequent integrative clustering.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.324
0.621
4
6
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Cancer ; Integrative Clustering ; Mass Spectrometry Imaging ; Prognosis; Genomic Characterization
Sprache
Veröffentlichungsjahr 2019
Prepublished im Jahr 2018
HGF-Berichtsjahr 2018
ISSN (print) / ISBN 1862-8346
e-ISSN 1862-8354
Quellenangaben Band: 13, Heft: 1, Seiten: , Artikelnummer: e1800137 Supplement: ,
Verlag Wiley
Verlagsort Weinheim
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-500390-001
Scopus ID 85059520986
PubMed ID 30580496
Erfassungsdatum 2019-01-10