PuSH - Publikationsserver des Helmholtz Zentrums München

Super paramagnetic clustering of protein sequences.

BMC Bioinformatics 6:82 (2005)
Verlagsversion Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: Detection of sequence homologues represents a challenging task that is important for the discovery of protein families and the reliable application of automatic annotation methods. The presence of domains in protein families of diverse function, inhomogeneity and different sizes of protein families create considerable difficulties for the application of published clustering methods. RESULTS: Our work analyses the Super Paramagnetic Clustering (SPC) and its extension, global SPC (gSPC) algorithm. These algorithms cluster input data based on a method that is analogous to the treatment of an inhomogeneous ferromagnet in physics. For the SwissProt and SCOP databases we show that the gSPC improves the specificity and sensitivity of clustering over the original SPC and Markov Cluster algorithm (TRIBE-MCL) up to 30%. The three algorithms provided similar results for the MIPS FunCat 1.3 annotation of four bacterial genomes, Bacillus subtilis, Helicobacter pylori, Listeria innocua and Listeria monocytogenes. However, the gSPC covered about 12% more sequences compared to the other methods. The SPC algorithm was programmed in house using C++ and it is available at http://mips.gsf.de/proj/spc. The FunCat annotation is available at http://mips.gsf.de. CONCLUSION: The gSPC calculated to a higher accuracy or covered a larger number of sequences than the TRIBE-MCL algorithm. Thus it is a useful approach for automatic detection of protein families and unsupervised annotation of full genomes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.423
0.000
34
41
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter NEURAL-NETWORK; GENE-EXPRESSION; WHOLE GENOMES; YEAST GENOME; DATABASE; CLASSIFICATION; ANNOTATION; ALGORITHM; FAMILIES; GENERATION
Sprache englisch
Veröffentlichungsjahr 2005
HGF-Berichtsjahr 0
ISSN (print) / ISBN 1471-2105
e-ISSN 1471-2105
Zeitschrift BMC Bioinformatics
Quellenangaben Band: 6, Heft: , Seiten: , Artikelnummer: 82 Supplement: ,
Verlag BioMed Central
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503700-001
PubMed ID 15804359
Scopus ID 25444458854
Erfassungsdatum 2005-12-31