PuSH - Publikationsserver des Helmholtz Zentrums München

Villaverde, A.F.* ; Fröhlich, F. ; Weindl, D. ; Hasenauer, J. ; Banga, J.R.*

Benchmarking optimization methods for parameter estimation in large kinetic models.

Bioinformatics 35, 830-838 (2019)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
MOTIVATION: Kinetic models contain unknown parameters that are estimated by optimizing the fit to experimental data. This task can be computationally challenging due to the presence of local optima and ill-conditioning. While a variety of optimization methods have been suggested to surmount these issues, it is difficult to choose the best one for a given problem a priori. A systematic comparison of parameter estimation methods for problems with tens to hundreds of optimization variables is currently missing, and smaller studies provided contradictory findings. RESULTS: We use a collection of benchmarks to evaluate the performance of two families of optimization methods: (i) multi-starts of deterministic local searches and (ii) stochastic global optimization metaheuristics; the latter may be combined with deterministic local searches, leading to hybrid methods. A fair comparison is ensured through a collaborative evaluation and a consideration of multiple performance metrics. We discuss possible evaluation criteria to assess the trade-off between computational efficiency and robustness. Our results show that, thanks to recent advances in the calculation of parametric sensitivities, a multi-start of gradient-based local methods is often a successful strategy, but a better performance can be obtained with a hybrid metaheuristic. The best performer combines a global scatter search metaheuristic with an interior point local method, provided with gradients estimated with adjoint-based sensitivities. We provide an implementation of this method to render it available to the scientific community. AVAILABILITY AND IMPLEMENTATION: The code to reproduce the results is provided as Supplementary Material and is available at Zenodo https://doi.org/10.5281/zenodo.1304034. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.531
1.869
32
47
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 35, Heft: 5, Seiten: 830-838 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-553800-001
Scopus ID 85062411332
PubMed ID 30816929
Erfassungsdatum 2019-03-19