Kappler, L.* ; Hoene, M.* ; Hu, C.* ; von Toerne, C. ; Li, J.* ; Bleher, D.* ; Hoffmann, C.* ; Böhm, A. ; Kollipara, L.* ; Zischka, H. ; Königsrainer, A.* ; Häring, H.-U. ; Peter, A. ; Xu, G.* ; Sickmann, A.* ; Hauck, S.M. ; Weigert, C. ; Lehmann, R.
Linking bioenergetic function of mitochondria to tissue-specific molecular fingerprints.
Am. J. Physiol. Endocrinol. Metab. 317, E374-E387 (2019)
Mitochondria are dynamic organelles with diverse functions in tissues such as liver and skeletal muscle. To unravel the mitochondrial contribution to tissue-specific physiology, we performed a systematic comparison of the mitochondrial proteome and lipidome of mice and assessed the consequences hereof for respiration. Liver and skeletal muscle mitochondrial protein composition was studied by data-independent ultra-high-performance (UHP)LC-MS/MS-proteomics, and lipid profiles were compared by UIIPLC-MS/MS lipidomics. Mitochondrial function was investigated by high-resolution respirometry in samples from mice and humans. Enzymes of pyruvate oxidation as well as several subunits of complex I, III, and ATP synthase were more abundant in muscle mitochondria. Muscle mitochondria were enriched in cardiolipins associated with higher oxidative phosphorylation capacity and flexibility, in particular CL(18:2)(4) and 22:6-containing cardiolipins. In contrast, protein equipment of liver mitochondria indicated a shuttling of complex I substrates toward gluconeogenesis and ketogenesis and a higher preference for electron transfer via the flavoprotein quinone oxidoreductase pathway. Concordantly, muscle and liver mitochondria showed distinct respiratory substrate preferences. Muscle respired significantly more on the complex I substrates pyruvate and glutamate, whereas in liver maximal respiration was supported by complex II substrate succinate. This was a consistent finding in mouse liver and skeletal muscle mitochondria and human samples. Muscle mitochondria are tailored to produce ATP with a high capacity for complex I-linked substrates. Liver mitochondria are more connected to biosynthetic pathways, preferring fatty acids and succinate for oxidation. The physiologic diversity of mitochondria may help to understand tissue-specific disease pathologies and to develop therapies targeting mitochondrial function.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Cardiolipins ; Liver ; Mitochondria ; Multi-omics ; Muscle; Skeletal-muscle; Respiratory-chain; Oxidative-phosphorylation; Supercomplex Formation; Linoleic-acid; Cardiolipin; Liver; Phospholipids; Gluconeogenesis; Dysfunction
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2019
Prepublished im Jahr
HGF-Berichtsjahr
2019
ISSN (print) / ISBN
0193-1849
e-ISSN
1522-1555
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 317,
Heft: 2,
Seiten: E374-E387
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
American Physiological Society
Verlagsort
9650 Rockville Pike, Bethesda, Md 20814 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
90000 - German Center for Diabetes Research
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Helmholtz Diabetes Center
Enabling and Novel Technologies
PSP-Element(e)
G-502400-001
G-505700-001
G-505200-003
A-630700-001
Förderungen
Copyright
Erfassungsdatum
2019-06-25