PuSH - Publikationsserver des Helmholtz Zentrums München

Georgii, E.* ; Dietmann, S. ; Uno, T.* ; Pagel, P. ; Tsuda, K.*

Enumeration of condition-dependent dense modules in protein interaction networks.

Bioinformatics 25, 933-940 (2009)
Verlagsversion Volltext DOI PMC
Open Access Gold
Motivation: Modern systems biology aims at understanding how the different molecular components of a biological cell interact. Often, cellular functions are performed by complexes consisting of many different proteins. The composition of these complexes may change according to the cellular environment, and one protein may be involved in several different processes. The automatic discovery of functional complexes from protein interaction data is challenging. While previous approaches use approximations to extract dense modules, our approach exactly solves the problem of dense module enumeration. Furthermore, constraints from additional information sources such as gene expression and phenotype data can be integrated, so we can systematically mine for dense modules with interesting profiles. Results: Given a weighted protein interaction network, our method discovers all protein sets that satisfy a user-defined minimum density threshold. We employ a reverse search strategy, which allows us to exploit the density criterion in an efficient way. Our experiments show that the novel approach is feasible and produces biologically meaningful results. In comparative validation studies using yeast data, the method achieved the best overall prediction performance with respect to confirmed complexes. Moreover, by enhancing the yeast network with phenotypic and phylogenetic profiles and the human network with tissue-specific expression data, we identified condition-dependent complex variants.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.328
2.670
57
71
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter molecular interaction database; functional modules; saccharomyces-cerevisiae; transcription elongation; community structure; complex; yeast; resource; search; identification; MOLECULAR INTERACTION DATABASE; FUNCTIONAL MODULES; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTION ELONGATION; COMMUNITY STRUCTURE; COMPLEX; YEAST; RESOURCE; SEARCH; IDENTIFICATION
Sprache englisch
Veröffentlichungsjahr 2009
HGF-Berichtsjahr 2009
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 25, Heft: 7, Seiten: 933-940 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503700-001
Scopus ID 63549103226
PubMed ID 19213739
Erfassungsdatum 2009-12-31