Concepts and limitations for learning developmental trajectories from single cell genomics.
Development 146:dev170506 (2019)
Single cell genomics has become a popular approach to uncover the cellular heterogeneity of progenitor and terminally differentiated cell types with great precision. This approach can also delineate lineage hierarchies and identify molecular programmes of cell-fate acquisition and segregation. Nowadays, tens of thousands of cells are routinely sequenced in single cell-based methods and even more are expected to be analysed in the future. However, interpretation of the resulting data is challenging and requires computational models at multiple levels of abstraction. In contrast to other applications of single cell sequencing, where clustering approaches dominate, developmental systems are generally modelled using continuous structures, trajectories and trees. These trajectory models carry the promise of elucidating mechanisms of development, disease and stimulation response at very high molecular resolution. However, their reliable analysis and biological interpretation requires an understanding of their underlying assumptions and limitations. Here, we review the basic concepts of such computational approaches and discuss the characteristics of developmental processes that can be learnt from trajectory models.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Computational Approaches ; Developmental Trajectories ; Pseudotime ; Single Cell Genomics ; Trajectory Inference; Regulatory Network Inference; Rna-sequencing Data; Spatial Transcriptomics; Blood Stem; Dynamics; Reveals; Reconstruction; Heterogeneity; Information; Mechanisms
Keywords plus
Sprache
Veröffentlichungsjahr
2019
Prepublished im Jahr
HGF-Berichtsjahr
2019
ISSN (print) / ISBN
0950-1991
e-ISSN
1477-9129
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 146,
Heft: 12,
Seiten: ,
Artikelnummer: dev170506
Supplement: ,
Reihe
Verlag
Company of Biologists
Verlagsort
Bidder Building, Station Rd, Histon, Cambridge Cb24 9lf, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
30201 - Metabolic Health
Forschungsfeld(er)
Enabling and Novel Technologies
Helmholtz Diabetes Center
PSP-Element(e)
G-503800-001
G-502300-001
Förderungen
Copyright
Erfassungsdatum
2019-07-01