Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments.
Sci. Total Environ. 706:136001 (2020)
Environmental discharges of very high (mg/L) antibiotic levels from pharmaceutical production contributed to the selection, spread and persistence of antibiotic resistance. However, the effects of less antibiotic-polluted effluents (mu g/L) from drug-formulation on exposed aquatic microbial communities are still scarce. Here we analyzed formulation effluents and sediments from the receiving creek collected at the discharge site (DW0), upstream (UP) and 3000 m downstream of discharge (DW3000) during winter and summer season. Chemical analyses indicated the largest amounts of trimethoprim (up to 5.08 mg/kg) and azithromycin (up to 039 mg/kg) at DW0, but sulfonamides accumulated at DW3000 (total up to 1.17 mg/kg). Quantitative PCR revealed significantly increased relative abundance of various antibiotic resistance genes (ARGs) against beta-lactams, macrolides, sulfonamides, trimethoprim and tetracyclines in sediments from DW0, despite relatively high background levels of some ARGs already at UP site. However, only sulfonamide (sul2) and macrolide ARG subtypes (mphG and msrE) were still elevated at DW3000 compared to UP. Sequencing of 165 rRNA genes revealed pronounced changes in the sediment bacterial community composition from both DW sites compared to UP site, regardless of the season. Numerous taxa with increased relative abundance at DW0 decreased to background levels at DW3000, suggesting die-off or lack of transport of effluent-originating bacteria. In contrast, various taxa that were more abundant in sediments than in effluents increased in relative abundance at DW3000 but not at DWO, possibly due to selection imposed by high sulfonamide levels. Network analysis revealed strong correlation between some clinically relevant ARGs (e.g. bla(GEs), bki(OXA), ennB, tet39,sul2) and taxa with elevated abundance at DW sites, and known to harbour opportunistic pathogens, such as Acinetobacter, Arcobacter,Aeromonas and Slietvanella. Our results demonstrate the necessity for improved management of pharmaceutical and rural waste disposal for mitigating the increasing problems with antibiotic resistance.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Antibiotic Manufacturing ; Sediment ; Pollution ; Bacterial Community ; Antibiotic Resistance Genes; Water Treatment-plant; Waste-water; River; Environment; Prevalence; Diversity; Resistome; Fate; Quantification; Dissemination
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
2019
HGF-Berichtsjahr
2019
ISSN (print) / ISBN
0048-9697
e-ISSN
1879-1026
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 706,
Heft: ,
Seiten: ,
Artikelnummer: 136001
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504700-001
Förderungen
Copyright
Erfassungsdatum
2019-12-20