PuSH - Publikationsserver des Helmholtz Zentrums München

Johannes, F.* ; Wardenaar, R.* ; Colomé-Tatché, M. ; Mousson, F.* ; de Graaf, P.* ; Mokry, M.* ; Guryev, V.* ; Timmers, H.T.* ; Cuppen, E.* ; Jansen, R.C.*

Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq.

Bioinformatics 26, 1000-1006 (2010)
Verlagsversion DOI PMC
Open Access Gold
MOTIVATION: ChIP-chip and ChIP-seq technologies provide genome-wide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/or individuals, we can now begin to characterize stochastic or systematic changes in epigenetic patterns during development (intra-individual) or at the population level (inter-individual). This requires statistical methods that permit a simultaneous comparison of multiple ChIP samples on a global as well as locus-specific scale. Current analytical approaches are mainly geared toward single sample investigations, and therefore have limited applicability in this comparative setting. This shortcoming presents a bottleneck in biological interpretations of multiple sample data. RESULTS: To address this limitation, we introduce a parametric classification approach for the simultaneous analysis of two (or more) ChIP samples. We consider several competing models that reflect alternative biological assumptions about the global distribution of the data. Inferences about locus-specific and genome-wide chromatin differences are reached through the estimation of multivariate mixtures. Parameter estimates are obtained using an incremental version of the Expectation-Maximization algorithm (IEM). We demonstrate efficient scalability and application to three very diverse ChIP-chip and ChIP-seq experiments. The proposed approach is evaluated against several published ChIP-chip and ChIP-seq software packages. We recommend its use as a first-pass algorithm to identify candidate regions in the epigenome, possibly followed by some type of second-pass algorithm to fine-tune detected peaks in accordance with biological or technological criteria. AVAILABILITY: R source code is available at http://gbic.biol.rug.nl/supplementary/2009/ChromatinProfiles/. Access to Chip-seq data: GEO repository GSE17937.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
0.000
2.420
27
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2010
HGF-Berichtsjahr 2010
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 26, Heft: 8, Seiten: 1000-1006 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
PubMed ID 20208068
Erfassungsdatum 2020-02-18