Troll, M. ; Brandmaier, S. ; Reitmeier, S.* ; Adam, J. ; Sharma, S. ; Sommer, A. ; Bind, M.A.* ; Neuhaus, K.* ; Clavel, T.* ; Adamski, J. ; Haller, D.* ; Peters, A. ; Grallert, H.
Investigation of adiposity measures and operational taxonomic unit (OTU) data transformation procedures in stool samples from a German Cohort Study using machine learning algorithms.
Microorganisms 8:547 (2020)
The analysis of the gut microbiome with respect to health care prevention and diagnostic purposes is increasingly the focus of current research. We analyzed around 2000 stool samples from the KORA (Cooperative Health Research in the Region of Augsburg) cohort using high-throughput 16S rRNA gene amplicon sequencing representing a total microbial diversity of 2089 operational taxonomic units (OTUs). We evaluated the combination of three different components to assess the reflection of obesity related to microbiota profiles: (i) four prediction methods (i.e., partial least squares (PLS), support vector machine regression (SVMReg), random forest (RF), and M5Rules); (ii) five OTU data transformation approaches (i.e., no transformation, relative abundance without and with log-transformation, as well as centered and isometric log-ratio transformations); and (iii) predictions from nine measurements of obesity (i.e., body mass index, three measures of body shape, and five measures of body composition). Our results showed a substantial impact of all three components. The applications of SVMReg and PLS in combination with logarithmic data transformations resulted in considerably predictive models for waist circumference-related endpoints. These combinations were at best able to explain almost 40% of the variance in obesity measurements based on stool microbiota data (i.e., OTUs) only. A reduced loss in predictive performance was seen after sex-stratification in waist-height ratio compared to other waist-related measurements. Moreover, our analysis showed that the contribution of OTUs less prevalent and abundant is minor concerning the predictive power of our models.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
16s Rrna ; Gut Microbiota ; Machine Learning ; Obesity ; Waist–height Ratio; Bioelectrical-impedance Analysis; Microbiome; Equation; Health; Index
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
2076-2607
e-ISSN
2076-2607
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 8,
Heft: 4,
Seiten: ,
Artikelnummer: 547
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
Basel
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
Molekulare Endokrinologie und Metabolismus (MEM)
POF Topic(s)
30202 - Environmental Health
90000 - German Center for Diabetes Research
30201 - Metabolic Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504091-002
G-501900-405
G-504000-010
G-505600-003
G-504090-001
Förderungen
Copyright
Erfassungsdatum
2020-04-22