PuSH - Publikationsserver des Helmholtz Zentrums München

Galiè, F.* ; Rospleszcz, S. ; Keeser, D.* ; Beller, E.* ; Illigens, B.* ; Lorbeer, R.* ; Grosu, S.* ; Selder, S.* ; Auweter, S.* ; Schlett, C.L.* ; Rathmann, W.* ; Schwettmann, L. ; Ladwig, K.-H. ; Linseisen, J. ; Peters, A. ; Bamberg, F.* ; Ertl-Wagner, B.* ; Stoecklein, S.*

Machine-learning based exploration of determinants of gray matter volume in the KORA-MRI study.

Sci. Rep. 10:8363 (2020)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
To identify the most important factors that impact brain volume, while accounting for potential collinearity, we used a data-driven machine-learning approach. Gray Matter Volume (GMV) was derived from magnetic resonance imaging (3T, FLAIR) and adjusted for intracranial volume (ICV). 93 potential determinants of GMV from the categories sociodemographics, anthropometric measurements, cardio-metabolic variables, lifestyle factors, medication, sleep, and nutrition were obtained from 293 participants from a population-based cohort from Southern Germany. Elastic net regression was used to identify the most important determinants of ICV-adjusted GMV. The four variables age (selected in each of the 1000 splits), glomerular filtration rate (794 splits), diabetes (323 splits) and diabetes duration (122 splits) were identified to be most relevant predictors of GMV adjusted for intracranial volume. The elastic net model showed better performance compared to a constant linear regression (mean squared error = 1.10 vs. 1.59, p<0.001). These findings are relevant for preventive and therapeutic considerations and for neuroimaging studies, as they suggest to take information on metabolic status and renal function into account as potential confounders.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.998
1.365
1
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Chronic Kidney-disease; White-matter; Variable Selection; Brain Volume; Risk-factors; Age; Regularization; Association; Population; Health
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Zeitschrift Scientific Reports
Quellenangaben Band: 10, Heft: 1, Seiten: , Artikelnummer: 8363 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504000-010
G-505300-001
G-504000-003
G-502900-001
G-504090-001
Scopus ID 85085155062
PubMed ID 32433583
Erfassungsdatum 2020-05-28