PuSH - Publikationsserver des Helmholtz Zentrums München

Alesutan, I.* ; Moritz, F. ; Haider, T.* ; Shouxuan, S.* ; Gollmann-Tepeköylü, C.* ; Holfeld, J.* ; Pieske, B.* ; Lang, F.* ; Eckardt, K.U.* ; Heinzmann, S.S. ; Voelkl, J.*

Impact of beta-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells.

J. Mol. Med. 98, 985–997 (2020)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor beta-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to beta-glycerophosphate. In VSMCs, beta-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. beta-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. beta-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, beta-glycerophosphate increased non-glycolytic acidification. beta-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated beta-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, beta-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.427
1.048
5
6
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Bioenergetics ; Glycolysis ; Mitochondrial Respiration ; Beta-glycerophosphate ; Vascular Calcification ; Vascular Smooth Muscle Cells; Calcification; Mitochondria; Metabolism; Phosphate; Aldosterone; Calcium
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 0946-2716
e-ISSN 1432-1440
Quellenangaben Band: 98, Heft: , Seiten: 985–997 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Tiergartenstrasse 17, D-69121 Heidelberg, Germany
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Environmental Sciences
PSP-Element(e) G-504800-001
Scopus ID 85085745720
PubMed ID 32488546
Erfassungsdatum 2020-06-18