Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Image-Guided Radiooncology: The Potential of Radiomics in Clinical Application.
In: Molecular Imaging in Oncology. Springer, 2020. 773-794 (Recent Results Cancer Res. ; 216)
Medical imaging plays an imminent role in today's radiation oncology workflow. Predominantly based on semantic image analysis, malignant tumors are diagnosed, staged, and therapy decisions are made. The field of "radiomics" promises to extract complementary, objective information from medical images. In radiomics, predefined quantitative features including intensity statistics, texture, shape, or filtering techniques are combined into statistical or machine learning models to predict clinical or biological outcomes. Alternatively, deep neural networks can directly analyze medical images and provide predictions. A large number of research studies could demonstrate that radiomics prediction models may provide significant benefits in the radiation oncology workflow including diagnostics, tumor characterization, target volume segmentation, prognostic stratification, and prediction of therapy response or treatment-related toxicities. This chapter provides an overview of techniques within the radiomics toolbox, potential clinical application, and current limitations. A literature overview of four selected malignant entities including non-small cell lung cancer, head and neck squamous cell carcinomas, soft tissue sarcomas, and gliomas is given.
Scopus
Cited By
Cited By
Altmetric
8
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Sammelbandbeitrag/Buchkapitel
Sprache
englisch
Veröffentlichungsjahr
2020
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
0080-0015
Bandtitel
Molecular Imaging in Oncology
Zeitschrift
Recent Results in Cancer Research
Quellenangaben
Band: 216,
Seiten: 773-794
Verlag
Springer
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Radiation Medicine (IRM)
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Radiation Sciences
PSP-Element(e)
G-501300-001
Scopus ID
85087253444
PubMed ID
32594406
Erfassungsdatum
2020-07-06