Benedetti, E. ; Gerstner, N. ; Pučić-Baković, M.* ; Keser, T.* ; Reiding, K.R.* ; Ruhaak, L.R.* ; Štambuk, T.* ; Selman, M.H.J.* ; Rudan, I.* ; Polašek, O.* ; Hayward, C.* ; Beekman, M.* ; Slagboom, E.* ; Wuhrer, M.* ; Dunlop, M.G.* ; Lauc, G.* ; Krumsiek, J.
Systematic evaluation of normalization methods for glycomics data based on performance of network inference.
Metabolites 10:271 (2020)
Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography – ElectroSpray Ionization-Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization – Furier Transform Ion Cyclotron Resonance – Mass Spectrometry (MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the ‘Probabilistic Quotient’ method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Data Normalization ; Gaussian Graphical Models ; Glycomics; Compositional Data-analysis; Glycosylation; Allotypes; Discovery; Model
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
2218-1989
e-ISSN
2218-1989
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 10,
Heft: 7,
Seiten: ,
Artikelnummer: 271
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
St Alban-anlage 66, Ch-4052 Basel, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-554100-001
G-503800-001
Förderungen
Copyright
Erfassungsdatum
2020-07-09