PuSH - Publikationsserver des Helmholtz Zentrums München

Parameterization of mechanistic models from qualitative data using an efficient optimal scaling approach.

J. Math. Biol. 81, 603–623 (2020)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Quantitative dynamical models facilitate the understanding of biological processes and the prediction of their dynamics. These models usually comprise unknown parameters, which have to be inferred from experimental data. For quantitative experimental data, there are several methods and software tools available. However, for qualitative data the available approaches are limited and computationally demanding. Here, we consider the optimal scaling method which has been developed in statistics for categorical data and has been applied to dynamical systems. This approach turns qualitative variables into quantitative ones, accounting for constraints on their relation. We derive a reduced formulation for the optimization problem defining the optimal scaling. The reduced formulation possesses the same optimal points as the established formulation but requires less degrees of freedom. Parameter estimation for dynamical models of cellular pathways revealed that the reduced formulation improves the robustness and convergence of optimizers. This resulted in substantially reduced computation times. We implemented the proposed approach in the open-source Python Parameter EStimation TOolbox (pyPESTO) to facilitate reuse and extension. The proposed approach enables efficient parameterization of quantitative dynamical models using qualitative data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
1.939
1.157
1
3
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Dynamical Modeling ; Optimization ; Parameter Estimation ; Qualitative Data ; Systems Biology; Identifiability Analysis; Systems; Identification
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 0303-6812
e-ISSN 1432-1416
Quellenangaben Band: 81, Heft: , Seiten: 603–623 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Tiergartenstrasse 17, D-69121 Heidelberg, Germany
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-553800-001
Scopus ID 85088955667
PubMed ID 32696085
Erfassungsdatum 2020-09-24