Chemical fractionation of organic matter and organic phosphorus extractions from freshwater lake sediment.
Anal. Chim. Acta 1130, 29-38 (2020)
Lake sediment organic matter (OM) is composed of a variety of organic compounds differing in their biolability and origin. Sources of sediment OM can include terrestrial input from the watershed and algal/microbial metabolic byproducts residing in the water column or sediment. Dissolved organic phosphorus (DOP) is a critical component of OM in freshwater eutrophic lakes, often acting as a source for bioavailable phosphorus that fuels harmful algal and/or cyanobacterial blooms. Parallel extractions of lake sediment collected from Missisquoi Bay, a eutrophic bay in Lake Champlain, were conducted with the goal of identifying OM and organic P sediment constituents using ultrahigh-resolution mass spectrometry from various extractants. Extractants converged into two groups based on the characteristics of their extracted OM; "stronger extractants" were composed of highly acidic and alkali media, while "milder extractants" represented weaker acids and bases. Sediment treated with the strong extractants afforded highly oxygenated and unsaturated OM thought to be stable with mostly lower heteroatomic content. In contrast, milder extractants yielded highly aliphatic and saturated compounds with lower masses and greater heteroatom functionally, sharing characteristics with labile molecules. Extracted organic P molecules mirrored the bulk OM in terms of lability, mass, and oxygenation within their corresponding extractants. Milder extractants resulted in greater organic P formulae assignments than the stronger extractants, with NaHCO3 resulting in the most aliphatic organic P formulae. We recommend the use of acetic acid to probe lake sediment for overall molecular characterization, spanning the greatest ranges of O/C and H/C ratios and representing both labile and mineral-associated OM. Other extractants should be implemented for a more targeted analysis. For instance, the use of NaHCO3 for organic P characterization, while using NaOH when interested in sediment geochemistry; both of which are critical for understanding the factors contributing to internal P loading.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Organic Matter ; Organic Phosphorus ; Lake Sediment ; Ft-icr Ms ; Solid Phase Extraction ; Internal Loading; Resolution Mass-spectrometry; Nuclear-magnetic-resonance; Solid-phase Extraction; Molecular Characterization; P-31 Nmr; Microbial Biomass; Soil; Iron; Dom; Forms
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
0003-2670
e-ISSN
1873-4324
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 1130,
Heft: ,
Seiten: 29-38
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504800-001
Förderungen
National Science Foundation
National Science Foundation SusChEM grant
Copyright
Erfassungsdatum
2020-10-08