PuSH - Publikationsserver des Helmholtz Zentrums München

Predicting antigen specificity of single T cells based on TCR CDR3 regions.

Mol. Syst. Biol. 16:e9416 (2020)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
It has recently become possible to simultaneously assay T-cell specificity with respect to large sets of antigens and the T-cell receptor sequence in high-throughput single-cell experiments. Leveraging this new type of data, we propose and benchmark a collection of deep learning architectures to model T-cell specificity in single cells. In agreement with previous results, we found that models that treat antigens as categorical outcome variables outperform those that model the TCR and antigen sequence jointly. Moreover, we show that variability in single-cell immune repertoire screens can be mitigated by modeling cell-specific covariates. Lastly, we demonstrate that the number of bound pMHC complexes can be predicted in a continuous fashion providing a gateway to disentangle cell-to-dextramer binding strength and receptor-to-pMHC affinity. We provide these models in the Python package TcellMatch to allow imputation of antigen specificities in single-cell RNA-seq studies on T cells without the need for MHC staining.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
8.991
0.000
18
34
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Antigen Specificity ; Multimodal ; Single Cell ; Supervised Learning ; T-cell Receptors
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 1744-4292
e-ISSN 1744-4292
Quellenangaben Band: 16, Heft: 8, Seiten: , Artikelnummer: e9416 Supplement: ,
Verlag EMBO Press
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen Helmholtz Association
Silicon Valley Community Foundation
Joachim Herz Stiftung
Scopus ID 85089320896
PubMed ID 32779888
Erfassungsdatum 2020-10-16