PuSH - Publikationsserver des Helmholtz Zentrums München

Starke, S.* ; Leger, S.* ; Zwanenburg, A.* ; Leger, K.* ; Lohaus, F.* ; Linge, A.* ; Schreiber, A.* ; Kalinauskaite, G.* ; Tinhofer, I.* ; Guberina, N.* ; Guberina, M.* ; Balermpas, P.* ; Von der Grün, J.* ; Ganswindt, U. ; Belka, C. ; Peeken, J.C. ; Combs, S.E. ; Boeke, S.* ; Zips, D.* ; Richter, C.* ; Löck, S.*

2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma.

Sci. Rep. 10:15625 (2020)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model (p= 0.001). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.998
1.365
1
2
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Zeitschrift Scientific Reports
Quellenangaben Band: 10, Heft: 1, Seiten: , Artikelnummer: 15625 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-521800-001
G-501300-001
Förderungen Projekt DEAL
Scopus ID 85091431579
PubMed ID 32973220
Erfassungsdatum 2020-11-10