Mayr, F.* ; Möller, G. ; Garscha, U.* ; Fischer, J.* ; Castaño, P.R.* ; Inderbinen, S.G.* ; Temml, V.* ; Waltenberger, B.* ; Schwaiger, S.* ; Hartmann, R.W.* ; Gege, C.* ; Martens, S.* ; Odermatt, A.* ; Pandey, A.V.* ; Werz, O.* ; Adamski, J. ; Stuppner, H.* ; Schuster, D.*
Finding new molecular targets of familiar natural products using in silico target prediction.
Int. J. Mol. Sci. 21:7102 (2020)
Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature's treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)-a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17 beta-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
In Silico Target Prediction ; Dihydrochalcones ; Sea ; Swisstargetprediction ; Superpred ; Polypharmacology ; Virtual Screening; 17-beta-hydroxysteroid-dehydrogenase Type-3; Macromolecular Targets; Drug Classification; Inhibitors; Potent; Discovery; Identification; Purification; Supertarget; Chalcones
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
1661-6596
e-ISSN
1422-0067
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 21,
Heft: 19,
Seiten: ,
Artikelnummer: 7102
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
Basel
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Molekulare Endokrinologie und Metabolismus (MEM)
POF Topic(s)
30201 - Metabolic Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-505600-001
G-505600-003
Förderungen
FWF Hertha Firnberg fellowship
GECT Euregio Tirol-Sudtirol-Trentino
Copyright
Erfassungsdatum
2020-11-12