Huang, J. ; Huth, C. ; Covic, M. ; Troll, M. ; Adam, J. ; Zukunft, S. ; Prehn, C. ; Wang, L. ; Nano, J. ; Scheerer, M.F. ; Neschen, S. ; Kastenmüller, G. ; Suhre, K.* ; Laxy, M. ; Schliess, F.* ; Gieger, C. ; Adamski, J. ; Hrabě de Angelis, M. ; Peters, A. ; Wang-Sattler, R.
Machine learning approaches reveal metabolic signatures of incident chronic kidney disease in individuals with prediabetes and type 2 diabetes.
Diabetes 69, 2756-2765 (2020)
Early and precise identification of individuals with pre-diabetes and type 2 diabetes (T2D) at risk for progressing to chronic kidney disease (CKD) is essential to prevent complications of diabetes. Here, we identify and evaluate prospective metabolite biomarkers and the best set of predictors of CKD in the longitudinal, population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort by targeted metabolomics and machine learning approaches. Out of 125 targeted metabolites, sphingomyelin C18:1 and phosphatidylcholine diacyl C38:0 were identified as candidate metabolite biomarkers of incident CKD specifically in hyperglycemic individuals followed during 6.5 years. Sets of predictors for incident CKD developed from 125 metabolites and 14 clinical variables showed highly stable performances in all three machine learning approaches and outperformed the currently established clinical algorithm for CKD. The two metabolites in combination with five clinical variables were identified as the best set of predictors, and their predictive performance yielded a mean area value under the receiver operating characteristic curve of 0.857. The inclusion of metabolite variables in the clinical prediction of future CKD may thus improve the risk prediction in people with prediabetes and T2D. The metabolite link with hyperglycemia-related early kidney dysfunction warrants further investigation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Risk; Sphingomyelin; Prediction; Albuminuria; Progression; Population; Children
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
0012-1797
e-ISSN
1939-327X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 69,
Heft: 12,
Seiten: 2756-2765
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
American Diabetes Association
Verlagsort
Alexandria, VA.
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
90000 - German Center for Diabetes Research
30201 - Metabolic Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er)
Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e)
G-504091-003
G-504090-001
G-504000-006
G-504091-002
G-504091-004
G-501900-061
G-505600-003
G-504000-002
G-501900-062
G-503700-001
G-505300-002
G-500600-001
G-504000-010
G-501900-401
Förderungen
Biomedical Research Program funds at Weill Cornell Medicine -Qatar, a program - Qatar Foundation
EIT, a body of the European Union
European Institute of Innovation and Technology (EIT) Health
European Union Seventh Framework Programme (EU FP7)
Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universitat, as part of LMUinnovativ
State of Bavaria
Helmholtz Zentrum Munchen -German Research Center for Environmental Health - German Federal Ministry of Education and Research (BMBF)
Copyright
Erfassungsdatum
2020-10-15