PuSH - Publikationsserver des Helmholtz Zentrums München

Wang, D.* ; Hensman, J.* ; Kutkaite, G. ; Toh, T.S.* ; Galhoz, A. ; Dry, J.R.* ; Saez-Rodriguez, J.* ; Garnett, M.J.* ; Menden, M.P. ; Dondelinger, F.*

A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates.

eLife 9:e60352 (2020)
Postprint Forschungsdaten DOI
Open Access Gold
Creative Commons Lizenzvertrag
High-throughput testing of drugs across molecular-characterised cell lines can identify candidate treatments and discover biomarkers. However, the cells' response to a drug is typically quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the uncertainty of the curve fit and the potential variability in the raw readouts. Here, we model the experimental variance using Gaussian Processes, and subsequently, leverage uncertainty estimates to identify associated biomarkers with a new Bayesian framework. Applied to in vitro screening data on 265 compounds across 1074 cancer cell lines, our models identified 24 clinically established drug-response biomarkers, and provided evidence for six novel biomarkers by accounting for association with low uncertainty. We validated our uncertainty estimates with an additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is applicable to any dose-response data without replicates, and improves biomarker discovery for precision medicine.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
7.080
1.666
5
8
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Drug-sensitivity; Cancer; Inhibitor; Landscape; Pathway
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 2050-084X
e-ISSN 2050-084X
Zeitschrift eLife
Quellenangaben Band: 9, Heft: , Seiten: , Artikelnummer: e60352 Supplement: ,
Verlag eLife Sciences Publications
Verlagsort Sheraton House, Castle Park, Cambridge, Cb3 0ax, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-554700-001
Förderungen Horizon 2020 - Research and Innovation Framework Programme
Wellcome Trust
Academy of Medical Sciences
Rosetrees Trust
NIHR Sheffield Biomedical Research Centre
Scopus ID 85100070764
Erfassungsdatum 2021-01-09