Grosu, S.* ; Rospleszcz, S. ; Hartmann, F.* ; Habes, M.* ; Bamberg, F.* ; Schlett, C.L.* ; Galiè, F.* ; Lorbeer, R.* ; Auweter, S.* ; Selder, S.* ; Buelow, R.* ; Heier, M. ; Rathmann, W.* ; Mueller-Peltzer, K.* ; Ladwig, K.-H. ; Grabe, H.J.* ; Peters, A. ; Ertl-Wagner, B.B.* ; Stoecklein, S.*
     
 
    
        
Associated factors of white matter hyperintensity volume: A machine-learning approach.
    
    
        
    
    
        
        Sci. Rep. 11:2325 (2021)
    
    
    
		
		
			
				To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Vascular Risk-factors; Small Vessel Disease; Diastolic Blood-pressure; Cerebrovascular-disease; Variable Selection; Unselected Cohort; Alcohol Intake; Lesions; Mri; Population
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2021
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2021
    
 
    
    
        ISSN (print) / ISBN
        2045-2322
    
 
    
        e-ISSN
        2045-2322
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 11,  
	    Heft: 1,  
	    Seiten: ,  
	    Artikelnummer: 2325 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Nature Publishing Group
        
 
        
            Verlagsort
            London
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of Epidemiology (EPI)
    
 
    
        POF Topic(s)
        30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Genetics and Epidemiology
    
 
    
        PSP-Element(e)
        G-504000-010
G-504000-006
G-504000-003
G-504090-001
    
 
    
        Förderungen
        
Projekt DEAL
Siemens Healthcare
German Research Foundation (DFG, Deutsche Forschungsgemeinschaft)
Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universitat, as part of LMUinnovativ
State of Bavaria
Helmholtz Zentrum Munchen-German Research Center for Environmental Health - German Federal Ministry of Education and Research (BMBF)
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2021-03-01