Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning.
    
    
        
    
    
        
        Nucleic Acids Res. 48, 11335-11346 (2020)
    
    
    
		
		
			
				High-content imaging and single-cell genomics are two of the most prominent high-throughput technologies for studying cellular properties and functions at scale. Recent studies have demonstrated that information in large imaging datasets can be used to estimate gene mutations and to predict the cell-cycle state and the cellular decision making directly from cellular morphology. Thus, high-throughput imaging methodologies, such as imaging flow cytometry can potentially aim beyond simple sorting of cellpopulations. We introduce IFC-seq, a machine learning methodology for predicting the expression profile of every cell in an imaging flow cytometry experiment. Since it is to-date unfeasible to observe singlecell gene expression and morphology in flow, we integrate uncoupled imaging data with an independent transcriptomics dataset by leveraging common surface markers. We demonstrate that IFC-seq successfully models gene expression of a moderate number of key gene-markers for two independent imaging flow cytometry datasets: (i) human blood mononuclear cells and (ii) mouse myeloid progenitor cells. In the case of mouse myeloid progenitor cells IFC-seq can predict gene expression directly from brightfield images in a label-free manner, using a convolutional neural network. The proposed method promises to add gene expression information to existing and new imaging flow cytometry datasets, at no additional cost.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Hematopoietic Stem-cells; T-cells; Cd8
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2020
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2020
    
 
    
    
        ISSN (print) / ISBN
        0305-1048
    
 
    
        e-ISSN
        1362-4962
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 48,  
	    Heft: 20,  
	    Seiten: 11335-11346 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Oxford University Press
        
 
        
            Verlagsort
            Great Clarendon St, Oxford Ox2 6dp, England
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-503800-001
    
 
    
        Förderungen
        Deutsche Forschungsgemeinschaft
Chan Zuckerberg Initiative DAF (advised fund of Silicon Valley Community Foundation)
Helmholtz Association (Incubator grant sparse2big)
BMBF
DFG Fellowship through the Graduate School of Quantitative Biosciences Munich (QBM)
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2021-02-06