PuSH - Publikationsserver des Helmholtz Zentrums München

InstantDL: An easy-to-use deep learning pipeline for image segmentation and classification.

BMC Bioinformatics 22:103 (2021)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: Deep learning contributes to uncovering molecular and cellular processes with highly performant algorithms. Convolutional neural networks have become the state-of-the-art tool to provide accurate and fast image data processing. However, published algorithms mostly solve only one specific problem and they typically require a considerable coding effort and machine learning background for their application. RESULTS: We have thus developed InstantDL, a deep learning pipeline for four common image processing tasks: semantic segmentation, instance segmentation, pixel-wise regression and classification. InstantDL enables researchers with a basic computational background to apply debugged and benchmarked state-of-the-art deep learning algorithms to their own data with minimal effort. To make the pipeline robust, we have automated and standardized workflows and extensively tested it in different scenarios. Moreover, it allows assessing the uncertainty of predictions. We have benchmarked InstantDL on seven publicly available datasets achieving competitive performance without any parameter tuning. For customization of the pipeline to specific tasks, all code is easily accessible and well documented. CONCLUSIONS: With InstantDL, we hope to empower biomedical researchers to conduct reproducible image processing with a convenient and easy-to-use pipeline.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.169
1.276
3
4
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 1471-2105
e-ISSN 1471-2105
Zeitschrift BMC Bioinformatics
Quellenangaben Band: 22, Heft: 1, Seiten: , Artikelnummer: 103 Supplement: ,
Verlag BioMed Central
Verlagsort Campus, 4 Crinan St, London N1 9xw, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme
BMBF
European Union
Scopus ID 85101903803
PubMed ID 33653266
Erfassungsdatum 2021-04-28