Lo, C.* ; Arora, S.* ; Ben-Shlomo, Y.* ; Barber, T.R.* ; Lawton, M.* ; Klein, J.C.* ; Kanavou, S.* ; Janzen, A.* ; Sittig, E.* ; Oertel, W.H. ; Grosset, D.* ; Hu, M.T.*
Olfactory testing in Parkinson's Disease & REM behavior disorder: A machine learning approach.
Neurology 96, e2016-e2027 (2021)
OBJECTIVE: We sought to identify an abbreviated test of impaired olfaction, amenable for use in busy clinical environments in prodromal (isolated REM sleep Behavior Disorder (iRBD)) and manifest Parkinson's disease (PD). METHODS: 890 PD and 313 control participants in the Discovery cohort study underwent Sniffin' stick odour identification assessment. Random forests were initially trained to distinguish individuals with poor (functional anosmia/hyposmia) and good (normosmia/super-smeller) smell ability using all 16 Sniffin' sticks. Models were retrained using the top 3 sticks ranked by order of predictor importance. One randomly selected 3-stick model was tested in a second independent PD dataset (n=452) and in two iRBD datasets (Discovery n=241; Marburg n=37) before being compared to previously described abbreviated Sniffin' stick combinations. RESULTS: In differentiating poor from good smell ability, the overall area under the curve (AUC) value associated with the top 3 sticks (Anise/Licorice/Banana) was 0.95 in the development dataset (sensitivity:90%, specificity:92%, positive predictive value:92%, negative predictive value:90%). Internal and external validation confirmed AUCs≥0.90. The combination of 3-stick model determined poor smell and an RBD screening questionnaire score of ≥5, separated iRBD from controls with a sensitivity, specificity, PPV and NPV of 65%, 100%, 100% and 30%. CONCLUSIONS: Our 3-Sniffin'-stick model holds potential utility as a brief screening test in the stratification of individuals with PD and iRBD according to olfactory dysfunction. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that a 3-Sniffin'-stick model distinguishes individuals with poor and good smell ability and can be used to screen for individuals with iRBD.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Smell Identification Test; Odor Identification; Screening Questionnaire; Nonmotor Symptoms; Normative Data; Sleep; Discrimination; Dysfunction; Impairment; University
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
0028-3878
e-ISSN
1526-632X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 96,
Heft: 15,
Seiten: e2016-e2027
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Lippincott Williams & Wilkins
Verlagsort
Two Commerce Sq, 2001 Market St, Philadelphia, Pa 19103 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-503200-001
Förderungen
Oxford National Institute for Health Research (NIHR) Biomedical Research Center (BRC)
Monument Trust Discovery Award from Parkinson's UK
Copyright
Erfassungsdatum
2021-04-29