PuSH - Publikationsserver des Helmholtz Zentrums München

Data processing optimization in untargeted metabolomics of urine using Voigt lineshape model non-linear regression analysis.

Metabolites 11:285 (2021)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Nuclear magnetic resonance (NMR) spectroscopy is well-established to address questions in large-scale untargeted metabolomics. Although several approaches in data processing and analysis are available, significant issues remain. NMR spectroscopy of urine generates information-rich but complex spectra in which signals often overlap. Furthermore, slight changes in pH and salt concentrations cause peak shifting, which introduces, in combination with baseline irregularities, un-informative noise in statistical analysis. Within this work, a straight-forward data processing tool addresses these problems by applying a non-linear curve fitting model based on Voigt function line shape and integration of the underlying peak areas. This method allows a rapid untargeted analysis of urine metabolomics datasets without relying on time-consuming 2D-spectra based deconvolution or information from spectral libraries. The approach is validated with spiking experiments and tested on a human urine 1H dataset compared to conventionally used methods and aims to facilitate metabolomics data analysis.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.932
1.103
1
2
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Nmr ; Data Processing ; Metabolomics ; Voigt-fitting; Quantification; Metabolites; Efficient
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 2218-1989
e-ISSN 2218-1989
Zeitschrift Metabolites
Quellenangaben Band: 11, Heft: 5, Seiten: , Artikelnummer: 285 Supplement: ,
Verlag MDPI
Verlagsort St Alban-anlage 66, Ch-4052 Basel, Switzerland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Environmental Sciences
PSP-Element(e) G-504800-001
Förderungen Deutsche Forschungsgemeinschaft (DFG)
Scopus ID 85105660981
PubMed ID 33947160
Erfassungsdatum 2021-05-25