Li, K.* ; Pfaff, F.* ; Hanebeck, U.D.*
Progressive von mises-fisher filtering using isotropic sample sets for nonlinear hyperspherical estimation.
Sensors 21:2991 (2021)
In this work, we present a novel scheme for nonlinear hyperspherical estimation using the von Mises-Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for the efficient and informative representation of the underlying distribution in a geometrically adaptive manner. The proposed deterministic sampling approach allows manually configurable sample sizes, considerably enhancing the filtering performance under strong nonlinearity. Furthermore, the progressive paradigm is applied to the fusing of measurements of non-identity models in conjunction with the isotropic sample sets. We evaluate the proposed filtering scheme in a nonlinear spherical tracking scenario based on simulations. Numerical results show the evidently superior performance of the proposed scheme over state-of-the-art von Mises-Fisher filters and the particle filter.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Sensor Fusion ; Recursive Bayesian Estimation ; Directional Statistics ; Unscented Transform ; Nonlinear Hyperspherical Filtering; Multivariate; Simulation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
1424-8220
e-ISSN
1424-8220
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 21,
Heft: 9,
Seiten: ,
Artikelnummer: 2991
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
St Alban-anlage 66, Ch-4052 Basel, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz AI - KIT (HAI - KIT)
POF Topic(s)
Forschungsfeld(er)
PSP-Element(e)
Förderungen
Helmholtz AI Cooperation Unit within the scope of the project "Ubiquitous Spatio-Temporal Learning for Future Mobility"(ULearn4Mobility)
Copyright
Erfassungsdatum
2021-06-30