Katsimpris, A.* ; Brahim, A.* ; Rathmann, W.* ; Peters, A. ; Strauch, K.* ; Flaquer, A.*
Prediction of type 2 diabetes mellitus based on nutrition data.
J. Nutr. Sci. 10:e46 (2021)
Numerous predictive models for the risk of type 2 diabetes mellitus (T2DM) exist, but a minority of them has implemented nutrition data so far, even though the significant effect of nutrition on the pathogenesis, prevention and management of T2DM has been established. Thus, in the present study, we aimed to build a predictive model for the risk of T2DM that incorporates nutrition data and calculates its predictive performance. We analysed cross-sectional data from 1591 individuals from the population-based Cooperative Health Research in the Region of Augsburg (KORA) FF4 study (2013-14) and used a bootstrap enhanced elastic net penalised multivariate regression method in order to build our predictive model and select among 193 food intake variables. After selecting the significant predictor variables, we built a logistic regression model with these variables as predictors and T2DM status as the outcome. The values of area under the receiver operating characteristic (ROC) curve, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of our predictive model were calculated. Eleven out of the 193 food intake variables were selected for inclusion in our model, which yielded a value of area under the ROC curve of 0⋅79 and a maximum PPV, NPV and accuracy of 0⋅37, 0⋅98 and 0⋅91, respectively. The present results suggest that nutrition data should be implemented in predictive models to predict the risk of T2DM, since they improve their performance and they are easy to assess.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
24hfl, 24-h Food List ; Elastic Net Regression ; Kora, Cooperative Health Research In The Region Of Augsburg ; Npv, Negative Predictive Value ; Nutrition ; Ppv, Positive Predictive Value ; Prediction Model ; Roc, Receiver Operating Characteristic ; T2dm, Type 2 Diabetes Mellitus ; Type 2 Diabetes
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
2048-6790
e-ISSN
2048-6790
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 10,
Heft: ,
Seiten: ,
Artikelnummer: e46
Supplement: ,
Reihe
Verlag
Cambridge Univ. Press
Verlagsort
Cambridge
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504000-010
G-504090-001
Förderungen
Copyright
Erfassungsdatum
2021-07-21