PuSH - Publikationsserver des Helmholtz Zentrums München

Katsimpris, A.* ; Brahim, A.* ; Rathmann, W.* ; Peters, A. ; Strauch, K.* ; Flaquer, A.*

Prediction of type 2 diabetes mellitus based on nutrition data.

J. Nutr. Sci. 10:e46 (2021)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Numerous predictive models for the risk of type 2 diabetes mellitus (T2DM) exist, but a minority of them has implemented nutrition data so far, even though the significant effect of nutrition on the pathogenesis, prevention and management of T2DM has been established. Thus, in the present study, we aimed to build a predictive model for the risk of T2DM that incorporates nutrition data and calculates its predictive performance. We analysed cross-sectional data from 1591 individuals from the population-based Cooperative Health Research in the Region of Augsburg (KORA) FF4 study (2013-14) and used a bootstrap enhanced elastic net penalised multivariate regression method in order to build our predictive model and select among 193 food intake variables. After selecting the significant predictor variables, we built a logistic regression model with these variables as predictors and T2DM status as the outcome. The values of area under the receiver operating characteristic (ROC) curve, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of our predictive model were calculated. Eleven out of the 193 food intake variables were selected for inclusion in our model, which yielded a value of area under the ROC curve of 0⋅79 and a maximum PPV, NPV and accuracy of 0⋅37, 0⋅98 and 0⋅91, respectively. The present results suggest that nutrition data should be implemented in predictive models to predict the risk of T2DM, since they improve their performance and they are easy to assess.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.927
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter 24hfl, 24-h Food List ; Elastic Net Regression ; Kora, Cooperative Health Research In The Region Of Augsburg ; Npv, Negative Predictive Value ; Nutrition ; Ppv, Positive Predictive Value ; Prediction Model ; Roc, Receiver Operating Characteristic ; T2dm, Type 2 Diabetes Mellitus ; Type 2 Diabetes
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 2048-6790
e-ISSN 2048-6790
Quellenangaben Band: 10, Heft: , Seiten: , Artikelnummer: e46 Supplement: ,
Verlag Cambridge Univ. Press
Verlagsort Cambridge
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504000-010
G-504090-001
Scopus ID 85110847446
PubMed ID 34221364
Erfassungsdatum 2021-07-21