Klaus, V. ; Schriever, S.C. ; Monroy Kuhn, J.M. ; Peter, A. ; Irmler, M. ; Tokarz, J. ; Prehn, C. ; Kastenmüller, G. ; Beckers, J. ; Adamski, J. ; Königsrainer, A.* ; Müller, T.D. ; Heni, M. ; Tschöp, M.H. ; Pfluger, P.T. ; Lutter, D.
Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism.
Mol. Metab. 53, 101295 (2021)
Technological advances have brought a steady increase in the availability of various types of omics data, from genomics to metabolomics. Integrating these multi-omics data is a chance and challenge for systems biology, yet tools to fully tap their potential remain scarce. We here present a fully unsupervised and versatile correlation-based method, termed Correlation guided Network Integration (CoNI), to integrate multi-omics data into a hypergraph structure that allows for the identification of effective modulators of metabolism. Our approach yields single transcripts of potential relevance that map to specific, densely connected metabolic sub-graphs or pathways. By applying our method on transcriptomics and metabolomics data from murine livers under standard Chow or high-fat diet, we identified eleven genes with potential regulatory effects on hepatic metabolism. Five candidates, including the hepatokine INHBE, were validated in human liver biopsies to correlate with diabetes-related traits such as overweight, hepatic fat content, and insulin resistance (HOMA-IR). Our method's successful application to an independent omics dataset confirmed that the novel CoNI framework is a transferable, entirely data-driven, flexible, and versatile tool for multiple omics data integration and interpretation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Data Integration ; Hepatic Steatosis ; Multi Omics ; Systems Biology; Insulin-resistance; Transgenic Mice; Myc; Aquaporin-7; Homeostasis; Obesity; Atlas
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
2212-8778
e-ISSN
2212-8778
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 53,
Heft: ,
Seiten: 101295
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Amsterdam
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30201 - Metabolic Health
90000 - German Center for Diabetes Research
30205 - Bioengineering and Digital Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er)
Helmholtz Diabetes Center
Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e)
G-502297-001
G-502200-001
G-502294-001
G-502400-001
G-500600-004
G-505600-003
G-503891-001
G-501900-221
A-630710-001
Förderungen
Initiative and Networking Fund of the Helmholtz Association
Helmholtz Alliance Aging and Metabolic Programming (AMPro)
Helmholtz Initiative for Personalized Medicine (iMed)
DZD tandem grant funds (SCS, PP, MH)
Alexander von Humboldt Foundation
Helmholtz Portfolio Program "Metabolic Dysfunction"
German Research Foundation (DFG)
German Federal Ministry of Education and Research (BMBF)
Copyright
Erfassungsdatum
2021-07-21