Chip-based sensing of the intercellular transfer of cell surface proteins: Regulation by the metabolic state.
    
    
        
    
    
        
        Biomedicines 9:1452 (2021)
    
    
    
		
		
			
				Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are anchored at the surface of mammalian blood and tissue cells through a carboxy-terminal GPI glycolipid. Eventually, they are released into incubation medium in vitro and blood in vivo and subsequently inserted into neighboring cells, potentially leading to inappropriate surface expression or lysis. To obtain first insight into the potential (patho)physiological relevance of intercellular GPI-AP transfer and its biochemical characterization, a cell-free chip-and microfluidic channel-based sensing system was introduced. For this, rat or human adipocyte or erythrocyte plasma membranes (PM) were covalently captured by the TiO2 chip surface operating as the acceptor PM. To measure transfer between PM, donor erythrocyte or adipocyte PM were injected into the channels of a flow chamber, incubated, and washed out, and the type and amount of proteins which had been transferred to acceptor PM evaluated with specific antibodies. Antibody binding was detected as phase shift of horizontal surface acoustic waves propagating over the chip surface. Time-and temperature-dependent transfer, which did not rely on fusion of donor and acceptor PM, was detected for GPI-APs, but not typical transmembrane proteins. Transfer of GPI-APs was found to be prevented by α-toxin, which binds to the glycan core of GPI anchors, and serum proteins in concentration-dependent fashion. Blockade of transfer, which was restored by synthetic phosphoinositolglycans mimicking the glycan core of GPI anchors, led to accumulation in the chip channels of full-length GPI-APs in association with phospholipids and cholesterol in non-membrane structures. Strikingly, efficacy of transfer between adipocytes and erythrocytes was determined by the metabolic state (genotype and feeding state) of the rats, which were used as source for the PM and sera, with upregulation in obese and diabetic rats and counterbalance by serum proteins. The novel chip-based sensing system for GPI-AP transfer may be useful for the prediction and stratification of metabolic diseases as well as elucidation of the putative role of intercellular transfer of cell surface proteins, such as GPI-APs, in (patho)physi-ological mechanisms.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Cell Surface Protein Expression ; Cell-free Chip-based Assay ; Glycosylphosphatidylinositol (gpi)-anchored Proteins (gpi-aps) ; Gpi-specific Phospholipase D (gpld1) ; Insulin Resistance ; Protein Transfer; Gpi-anchored Proteins; Decay-accelerating Factor; Camp-binding Ectoprotein; Alkaline-phosphatase; Phospholipase-d; Membrane-proteins; Rat Adipocytes; Sulfonylurea Drug; Apical Surface; Extracellular Vesicles
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2021
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2021
    
 
    
    
        ISSN (print) / ISBN
        2227-9059
    
 
    
        e-ISSN
        2227-9059
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 9,  
	    Heft: 10,  
	    Seiten: ,  
	    Artikelnummer: 1452 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            MDPI
        
 
        
            Verlagsort
            Basel, Switzerland
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        90000 - German Center for Diabetes Research
30201 - Metabolic Health
    
 
    
        Forschungsfeld(er)
        Helmholtz Diabetes Center
    
 
    
        PSP-Element(e)
        G-501900-221
G-502200-001
    
 
    
        Förderungen
        Helmholtz Centre for Environmental Research
European Research Services
Deutsche Forschungsgemeinschaft
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2021-12-09