Fallerini, C.* ; Picchiotti, N.* ; Baldassarri, M.* ; Zguro, K.* ; Daga, S.* ; Fava, F.* ; Benetti, E.* ; Amitrano, S.* ; Bruttini, M.* ; Palmieri, M.C.* ; Croci, S.* ; Lista, M.* ; Beligni, G.* ; Valentino, F.* ; Meloni, I.* ; Tanfoni, M.* ; Minnai, F.* ; Colombo, F.* ; Cabri, E.* ; Fratelli, M.* ; Gabbi, C.* ; Mantovani, S.* ; Frullanti, E.* ; Gori, M.* ; Crawley, F.P.* ; Butler-Laporte, G.* ; Richards, B.* ; Zeberg, H.* ; Lipcsey, M.* ; Hultström, M.* ; Ludwig, K.U.* ; Schulte, E.C. ; Pairo-Castineira, E.* ; Baillie, J.K.* ; Schmidt, A.* ; Frithiof, R.* ; GEN-COVID Multicenter Study (Protzer, U.) ; Mari, F.* ; Renieri, A.* ; Furini, S.*
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity.
Hum. Genet. 141, 147-173 (2022)
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Association; Set
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
2021
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
0340-6717
e-ISSN
1432-1203
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 141,
Heft: 1,
Seiten: 147-173
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
One New York Plaza, Suite 4600, New York, Ny, United States
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Immune Response and Infection
PSP-Element(e)
G-502700-003
Förderungen
CIHR
Center for Sepsis Control and Care
Italian Ministry of University and Research
MIUR
Copyright
Erfassungsdatum
2022-02-01