Condensed tannins as antioxidants that protect poplar against oxidative stress from drought and UV-B.
Plant Cell Environ. 45, 362-377 (2022)
Condensed tannins (CTs, proanthocyanidins) are widespread polymeric flavan-3-ols known for their ability to bind proteins. In poplar (Populus spp.), leaf condensed tannins are induced by both biotic and abiotic stresses, suggesting diverse biological functions. Here we demonstrate the ability of CTs to function as physiological antioxidants, preventing oxidative and cellular damage in response to drought and UV-B irradiation. Chlorophyll fluorescence was used to monitor photosystem II performance, and both hydrogen peroxide and malondialdehyde content was assayed as a measure of oxidative damage. Transgenic MYB-overexpressing poplar (Populus tremula x tremuloides) with high CT content showed reduced photosystem damage and lower hydrogen peroxide and malondialdehyde content after drought and UV-B stress. This antioxidant effect of CT was observed using two different poplar MYB CT regulators, in multiple independent lines and different genetic backgrounds. Additionally, low-CT MYB134-RNAi transgenic poplars showed enhanced susceptibility to drought-induced oxidative stress. UV-B radiation had different impacts than drought on chlorophyll fluorescence, but all high-CT poplar lines displayed reduced sensitivity to both stresses. Our data indicate that CTs are significant defenses against oxidative stress. The broad distribution of CTs in forest systems which are exposed to diverse abiotic stresses suggests that these compounds have wider functional roles than previously realized. This article is protected by copyright. All rights reserved.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Abiotic Stress ; Populus ; Flavan-3-ols ; Flavonoids ; Oxidative Stress ; Plant Physiology ; Proanthocyanidins ; Reactive Oxygen Species; Chlorophyll Fluorescence; Active Oxygen; Regulates Proanthocyanidin; Phenolic-compounds; Isoprene Emission; Plants; Leaves; Populus; Flavonoids; Radiation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
2021
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
0140-7791
e-ISSN
1365-3040
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 45,
Heft: 2,
Seiten: 362-377
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
Malden, MA
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504991-001
Förderungen
natural sciences and engineering research council of canada
Copyright
Erfassungsdatum
2022-01-18