PuSH - Publikationsserver des Helmholtz Zentrums München

Hetzel, L. ; Fischer, D.S. ; Günnemann, S.* ; Theis, F.J.

Graph representation learning for single cell biology.

Curr. Opin. Syst. Biol. 28:100347 (2021)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Single cell RNA sequencing measures gene expression at an unprecedented resolution and scale and allows the analysis of cellular phenotypes which was not possible before. In this context, graphs occur as a natural representation of the system - both as gene-centric and cell-centric. However, many advances in machine learning on graphs are not yet harnessed in models on single-cell data. Taking the inference of cell types or gene interactions as examples, graph representation learning has a wide applicability to both cell and gene graphs. Recent advances in spatial molecular profiling additionally put graph-learning in the focus of attention due the innate resemblance of spatial information to spatial graphs. We argue that graph embedding techniques have great potential for various applications across single cell biology. Here, we discuss how graph representation learning maps to current models and concepts used in single cell biology and formalise overlaps to developments in graph-based deep learning.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
0.000
0.672
6
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2452-3100
e-ISSN 2452-3100
Quellenangaben Band: 28, Heft: , Seiten: , Artikelnummer: 100347 Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen Bundesministerium für Bildung und Forschung
Helmholtz Association's Initiative and Networking Fund
Helmholtz AI
Erfassungsdatum 2022-08-31